Биологических систем математическое моделирование. Математическое моделирование биологических процессов

МАТЕМАТИЧЕСКИЕ МОДЕЛИ В БИОЛОГИИ

Т.И. Волынкина

Д. Скрипникова студентка

ФГОУ ВПО «Орловский государственный аграрный университет»

Математическая биология - это теория математических моделей биологических процессов и явлений. Математическая биология относится к прикладной математике и активно использует её методы. Критерием истины в ней является математическое доказательство, важнейшую роль играет математическое моделирование с использованием компьютеров. В отличие от чисто математических наук, в математической биологии исследуются чисто биологические задачи и проблемы методами современной математики, а результаты имеют биологическую интерпретацию. Задачами математической биологии являются описание законов природы на уровне биологии и основной задачей - интерпретация результатов полученных в ходе исследований. Примером служит закон Харди-Вайнберга, который доказывает, что система популяции может быть предсказана на основе этого закона. Исходя из этого закона, популяция - это группа самоподдерживающихся аллелей, в которой основу дает естественный отбор. Сам по себе естественный отбор является, с точки зрения математики, независимой переменной, а популяция - зависимой переменной, причем под популяцией рассматривается некоторое число переменных, влияющих друг на друга. Это число особей, число аллелей, плотность аллелей, отношение плотности доминирующих аллелей к плотности рецессивных аллелей, и т.д. В течение последних десятилетий наметился значительный прогресс в количественном (математическом) описании функций различных биосистем на различных уровнях организации жизни: молекулярном, клеточном, органном, организменном, популяционном, биогеоценологическом. Жизнь определяется множеством различных характеристик этих биосистем и процессов, протекающих на соответствующих уровнях организации системы и интергированных в единое целое в процессе функционирования системы.

Построение математических моделей биологических систем стало возможным благодаря исключительно интенсивной аналитической работе экспериментаторов: морфологов, биохимиков, физиологов, специалистов по молекулярной биологии и др. В результате этой работы кристаллизованы морфофункциональные схемы различных клеток, в рамках которых упорядоченно в пространстве и времени протекают различные физико-химические и биохимические процессы, образующие весьма сложное переплетение.

Вторым обстоятельством, способствующим привлечению математического аппарата в биологию, является тщательное экспериментальное определение констант скоростей многочисленных внутриклеточных реакций, определяющих функции клетки и соответствующей биосистемы. Без знания таких констант невозможно формально-математическое описание внутриклеточных процессов.

Третьим условием, определившим успех математического моделирования в биологии, явилось развитие мощных вычислительных средств в виде персональных компьютеров и суперкомпьютеров. Это связано с тем, что обычно процессы, контролирующие ту или иную функцию клеток или органов, многочисленны, охвачены петлями прямой и обратной связи и, следовательно, описываются системами нелинейных уравнений. Такие уравнения не решаются аналитически, но могут быть решены численно при помощи компьютера.

Численные эксперименты на моделях, способные воспроизводить широкий класс явлений в клетках, органах и организме, позволяют оценить правильность предположений, сделанных при построении моделей. В качестве постулатов моделей используются экспериментальные факты, необходимость некоторых допущений и предположений является важным теоретическим компонентом моделирования. Эти допущения и предположения являются гипотезами, которые могут быть подвергнуты экспериментальной проверке. Таким образом, модели становятся источниками гипотез, и притом, экспериментально верифицируемых. Эксперимент, направленный на проверку данной гипотезы, может опровергнуть или подтвердить ее и тем самым способствовать уточнению модели. Такое взаимодействие моделирования и эксперимента происходит непрерывно, приводя к более глубокому и точному пониманию явления: эксперимент уточняет модель, новая модель выдвигает новые гипотезы, эксперимент уточняет новую модель и так далее.

В настоящее время математическая биология, включающая в себя математические теории разнообразных биологических систем и процессов, является, с одной стороны, уже в достаточной степени сложившейся научной дисциплиной, а с другой стороны, одной из наиболее бурно развивающихся научных дисциплин, объединяющих усилия специалистов из различных областей знания – математиков, биологов, физиков, химиков и специалистов по компьютерным наукам. Сформировался ряд дисциплин математической биологии: математическая генетика, иммунология, эпидемиология, экология, ряд разделов математической физиологии, в частности, математическая физиология сердечно-сосудистой системы.

Как всякая научная дисциплина, математическая биология имеет свои предмет, способы, методы и процедуры исследования. В качестве предмета исследований возникают математические (компьютерные) модели биологических процессов, одновременно представляющие собой и объект исследования, и инструмент для исследования собственно биологических систем. В связи с такой двоякой сущностью биоматематических моделей, они подразумевают использование имеющихся и разработку новых способов анализа математических объектов (теорий и методов соответствующих разделов математики) с целью изучения свойств самой модели как математического объекта, а также использование модели для воспроизведения и анализа экспериментальных данных, получаемых в биологических экспериментах. При этом в качестве одного из наиболее важных назначений математических моделей (и математической биологии в целом) является возможность предсказания биологических явлений и сценариев поведения биосистемы в определенных условиях и их теоретического обоснования до (или даже вместо) проведения соответствующих биологических экспериментов.

Основным методом исследования и использования сложных моделей биологических систем является вычислительный компьютерный эксперимент, который требует применения адекватных методов вычислений для соответствующих математических систем, алгоритмов вычислений, технологий разработки и реализации компьютерных программ, хранения и обработки результатов компьютерного моделирования. Эти требования подразумевают разработку теорий, методов, алгоритмов и технологий компьютерного моделирования в рамках различных направлений биоматематики.

Наконец, в связи с основной целью использования биоматематических моделей для познания законов функционирования биологических систем, все стадии разработки и использования математических моделей предполагают обязательную опору на теорию и практику биологической науки.

Мы уже говорили о том, что математический подход к изучению тех или иных явлений реального мира начинается обычно с создания соответствующих общих понятий, т. е. с построения математических моделей, обладающих существенными для нас свойствами тех систем и процессов, которые мы изучаем. Мы упоминали и о тех трудностях, с которыми Связано построение таких моделей в биологии, трудностях, обусловленных чрезвычайной сложностью биологических систем. Однако, несмотря на эти трудности, "модельный" подход к биологическим проблемам сейчас успешно развивается и уже принес определенные результаты. Мы рассмотрим некоторые модели, относящиеся к различным биологическим процессам и системам.

Говоря о роли моделей в биологических исследованиях, важно заметить следующее. Хотя термин «модель» мы понимаем в абстрактном смысле - как некоторую систему логических понятий, а не как реальное физическое устройство, все же модель - это нечто существенно большее, чем простое описание явления или чисто качественная гипотеза, в которых еще остается достаточно места для разного рода неясностей и субъективных мнений. Напомним следующий пример, относящийся к довольно далекому прошлому. В свое время Гельмгольц, занимаясь изучением слуха, выдвинул так называемую резонансную теорию, выглядевшую правдоподобно с чисто качественной стороны. Однако проведенные позже количественные расчеты, учитывающие реальные значения масс, упругости и вязкости составляющих слуховую систему компонент, показали несостоятельность этой гипотезы. Иначе говоря, попытка превратить чисто качественную гипотезу в точную модель, допускающую ее исследование математическими методами, сразу же обнаружила несостоятельность исходных принципов. Конечно, если мы построили некоторую модель и даже получили хорошее согласие между этой моделью и результатами соответствующего биологического эксперимента, то это еще не доказывает правильности нашей модели. Вот если мы на основании изучения нашей модели сможем сделать какие-то предсказания о той биологической системе, которую мы моделируем, а затем подтвердим эти предсказания реальным экспериментом, то это будет гораздо более ценным свидетельством в пользу правильности модели.

Но перейдем к конкретным примерам.

2.Кровообращение

Одной из первых, если не самой первой, работой по математическому моделированию биологических процессов следует считать работу Леонарда Эйлера, в которой он развил математическую теорию кровообращения, рассматривая в первом приближении всю кровеносную систему как состоящую из резервуара с упругими стенками, периферического сопротивления и насоса. Эти идеи Эйлера (как и некоторые другие его работы) были сперва основательно забыты, а затем возрождены в более поздних работах других авторов.

3. Законы Менделя

Достаточно давняя и хорошо известная, но тем не менее весьма замечательная модель в биологии - это менделевская теория наследственности. Эта модель, основанная на теоретико-вероятностных понятиях, состоит в том, что в хромосомах родительских клеток заложены определенные наборы признаков, которые при оплодотворении комбинируются между собой независимо и случайно. В дальнейшем эта основная идея подверглась весьма существенным уточнениям; так, например, было обнаружено, что разные признаки не всегда независимы друг от друга; если они связаны с одной и той же хромосомой, то они могут передаваться лишь в определенной комбинации. Далее, обнаружилось, что и разные хромосомы комбинируются не независимо, а имеет место свойство, названное сродством хромосом, нарушающее эту независимость и т. д. В настоящее время теоретико-вероятностные и статистические методы весьма широко проникли в генетические исследования и даже термин «математическая генетика» получил полные права гражданства. Сейчас в этой области ведется интенсивная работа, получено много результатов, интересных как с биологической, так и с чисто математической точки зрения. Однако в самой основе этих исследований лежит та модель, которая была создана Менделем более 100 лет назад.

4. Модели мышцы

Одним из интереснейших объектов физиологического исследования является мышца. Этот объект весьма доступен, и многие исследования экспериментатор может проделать просто на себе, располагая лишь сравнительно несложным оборудованием. Достаточно ясны и определенны и те функции, которые выполняет мышца в живом организме. Несмотря на все это, многочисленные попытки построить удовлетворительную модель работы мышцы не дали окончательных результатов. Ясно, что хотя мышца может растягиваться и сокращаться, подобно пружине, их свойства совершенно различны, и даже в самом первом приближении пружину нельзя рассматривать как подобие мышцы. Для пружины существует строгая зависимость между ее удлинением и приложенной к ней нагрузкой. Для мышцы это не так: мышца может менять свою длину, сохраняя натяжение, и наоборот, менять силу тяги, не изменяя длины. Проще говоря, при одной и той же длине мышца может быть расслаблена, а может быть напряжена.

Среди различных режимов работы, возможных для мышцы, наиболее существенны так называемое изотоническое сокращение (т. е. сокращение, при котором напряжение мышцы остается постоянным) и изометрическое напряжение, при котором не меняется длина мышцы (оба ее конца неподвижно закреплены). Исследование мышцы в этих режимах важно для понимания принципов ее работы, хотя в естественных условиях активность мышцы не бывает ни чисто изотонической, ни чисто изометрической.

Для описания соотношения между скоростью изотонического сокращения мышцы и величиной нагрузки были предложены различные математические формулы. Наиболее известная из них - так называемое характеристическое уравнение Хилла. Оно имеет вид

(P+a)V=b(P 0 -P) ,

- скорость сокращения, а, b и Р 0 - постоянные.

Другие хорошо известные формулы для описания этой же связи - это уравнение Обера

P = Р 0 e- V⁄P ±F

и уравнение Полиссара

V=const (А 1-P/P 0 - B 1-P/P 0) .

Уравнение Хилла получило широкое распространение в физиологии; оно дает достаточно хорошее совпадение с экспериментом для мышц самых разных животных, хотя на самом деле оно представляет собой результат «подбора», а не вывод из некоторой модели. Два других уравнения, дающих в довольно широком диапазоне нагрузок примерно ту же зависимость, что и уравнение Хилла, получены их авторами из определенных представлений о физико-химическом механизме мышечного сокращения. Существует ряд попыток построить модель работы мышцы, рассматривая последнюю как некоторую комбинацию упругих и вязких элементов. Однако до сих пор достаточно удовлетворительной модели, отражающей все основные черты работы мышцы в различных режимах, не существует.

5. Модели нейрона, нейронные сети

Нервные клетки, или нейроны, это те «рабочие единицы», из которых состоит нервная система и которым организм животного или человека обязан всеми своими способностями воспринимать внешние сигналы и управлять различными частями тела. Характерная черта нервных клеток состоит в том, что такая клетка может находиться в двух состояниях - покоя и возбуждения. В этом нервные клетки сходны с такими элементами, как радиолампы или полупроводниковые триггеры, из которых собираются логические схемы вычислительных машин. За последние 15-20 лет было предпринято много попыток моделировать деятельность нервной системы, исходя из тех же принципов, на которых основана работа универсальных вычислительных машин. Еще в 40-х годах американские исследователи Мак-Каллок и Питтс ввели понятие «формального нейрона», определив его как элемент (физическая природа которого не играет роли), снабженный некоторым количеством «возбуждающих» и некоторым количеством «тормозящих» входов. Сам этот элемент может находиться в двух состояниях - «покой» или «возбуждение». Возбужденное состояние наступает в том случае, если на нейрон пришло достаточное число возбуждающих сигналов и нет тормозящих сигналов. Мак-Каллок и Питтс показали, что с помощью схем, составленных из таких элементов, можно, в принципе, реализовать любой из типов обработки информации, происходящих в живом организме. Это, однако, вовсе не означает, что мы тем самым познали действительные принципы работы нервной системы. Прежде всего, хотя для нервных клеток характерен принцип «все или ничего», т. е. наличие двух четко выраженных состояний - покой и возбуждение, отсюда вовсе не следует, что наша нервная система, подобно универсальной вычислительной машине, пользуется двоичным цифровым кодом, состоящим из нулей и единиц. Например, в нервной системе существенную роль играет, видимо, частотная модуляция, т. е. передача информации с помощью длин временных интервалов между импульсами. Вообще в нервной системе нет, видимо, такого разделения способов кодирования информации на «цифровые» дискретные) и «аналоговые» (непрерывные), какое имеется в современной вычислительной технике.

Для того чтобы система нейронов работала как некоторое целое, необходимо, чтобы между этими нейронами были определенные связи: импульсы, генерируемые одним нейроном, должны поступать на входы других нейронов. Эти связи могут иметь правильную, регулярную структуру, а могут определяться лишь статистическими закономерностями и подвергаться тем или иным случайным изменениям. В существующих сейчас вычислительных устройствах никакой случайности в соединениях между элементами не допускается, однако имеется ряд теоретических исследований по поводу возможности построения вычислительных устройств, основанных на принципах случайных связей между элементами. Есть достаточно серьезные доводы в пользу того, что связи между реальными нейронами в нервной системе тоже носят в значительной мере статистический, а не строго регулярный характер. Однако мнения по этому поводу расходятся.

В целом, по поводу проблемы моделирования нервной системы можно сказать следующее. Мы уже довольно много внаем об особенностях работы нейронов, т. е. тех элементов, из которых состоит нервная система. Более того, с помощью систем формальных нейронов (понимаемых в смысле Мак- Каллока и Питтса или в каком-либо ином), имитирующих основные свойства реальных нервных клеток, можно моделировать, как уже говорилось, весьма разнообразные способы обработки информации. Тем не менее мы еще довольно далеки от четкого понимания основных принципов работы нервной системы и отдельных ее частей, а следовательно, и от создания ее удовлетворительной модели * .

* (Если мы можем создать какую-то систему, умеющую решать такие же задачи, что и какая-то другая система, то это еще не значит, что обе системы работают по одним и тем же принципам. Например, можно численно решать дифференциальное уравнение на цифровой вычислительной машине, задав ей соответствующую программу, а можно то же уравнение решать на аналоговой машине. Мы получим одинаковые или почти одинаковые результаты, но принципы обработки информации в этих двух типах машин совершенно различные. )

6. Восприятие зрительных образов. Цветное зрение

Зрение - один из основных каналов, по которому к нам поступают сведения о внешнем мире. Известное выражение - лучше один раз увидеть, чем сто раз услышать - справедливо, между прочим, и с чисто информационной точки зрения: количество информации, которое мы воспринимаем с помощью зрения, несравненно больше, чем воспринимаемое другими органами чувств. Эта важность зрительной системы для живого организма наряду с другими соображениями (специфичность функций, возможность проведения разнообразных исследований без каких-либо повреждений системы и т. д.) стимулировала ее изучение и, в частности, попытки модельного подхода к этой проблеме.

Глаз представляет собой орган, служащий одновременно и оптической системой и устройством для обработки информации. И с той и с другой точки зрения эта система обладает рядом удивительных свойств. Замечательна способность глаза приспосабливаться к очень широкому диапазону интенсивностей освещения и правильно воспринимать при этом все цвета. Например, находящийся в плохо освещенной комнате кусок мела отражает меньше света, чем кусок угля, вынесенный на яркий солнечный свет, тем не менее мы в каждом из этих случаев воспринимаем цвета соответствующих предметов правильно. Глаз хорошо передает относительные различия в интенсивностях освещения и даже их несколько «утрирует». Так, серая линия на ярко-белом фоне кажется нам более темной, чем сплошное поле того же серого цвета. Эта способность глаза подчеркивать контрасты освещенности связана с тем, что зрительные нейроны оказывают друг на друга тормозящее действие: если из двух соседних нейронов первый получает более сильный сигнал, чем второй, то он оказывает на второй интенсивное тормозящее действие, и на выходе этих нейронов разница в интенсивности получается больше, чем была разница в интенсивности входных сигналов. Модели, состоящие из формальных нейронов, соединенных между собой как возбуждающими, так и тормозящими связями, привлекают внимание как физиологов, так и математиков. Здесь имеются и интересные результаты и нерешенные вопросы.

Большой интерес представляет механизм восприятия глазом различных цветов. Как известно, все оттенки цветов, воспринимаемых нашим глазом, могут быть представлены как комбинации трех основных цветов. Обычно в качестве таких основных цветов берут красный, синий и желтый цвета, отвечающие длинам волн 700, 540 и 450 Å, но этот выбор не однозначен.

«Трехцветность» нашего зрения связана с тем, что в глазу человека имеются рецепторы трех типов, с максимумами чувствительности в желтой, синей и красной зонах соответственно. Вопрос о том, как мы с помощью этих трех рецепторов различаем большое количество цветовых оттенков, весьма не прост. Например, недостаточно ясно еще - чем именно кодируется тот или иной цвет в нашем глазу: частотой нервных импульсов, локализацией того нейрона, который преимущественно реагирует на данный оттенок цвета, или чем-либо еще. Существуют некоторые модельные представления об этом процессе восприятия оттенков, однако они еще носят довольно предварительный характер. Несомненно, впрочем, что и здесь существенную роль должны играть системы нейронов, соединенных между собой как возбуждающими, так и тормозящими связями.

Наконец, глаз весьма интересен и как кинематическая система. Рядом остроумных опытов (многие из них были выполнены в лаборатории физиологии зрения Института проблем передачи информации в Москве) был установлен следующий на первый взгляд неожиданный факт: если некоторое изображение неподвижно относительно глаза, то глаз его не воспринимает. Наш глаз, осматривая какой-либо предмет, буквально «ощупывает» его (эти движения глаза можно при помощи соответствующей аппаратуры точно зарегистрировать). Изучение двигательного аппарата глаза и разработка соответствующих модельных представлений достаточно интересны как сами по себе, так и в связи с другими (оптическими, информационными и т. п.) свойствами нашей зрительной системы.

Резюмируя, можно сказать, что мы еще далеки от создания вполне удовлетворительных моделей зрительной системы, хорошо описывающих все ее основные свойства. Однако ряд важных аспектов и (принципов ее работы уже достаточно ясен и может быть смоделирован в виде вычислительных программ для УЦВМ или даже в виде технических устройств.

7. Модель активной среды. Распространение возбуждения

Одно из весьма характерных свойств многих живых тканей, в первую очередь нервной ткани, это их способность к возбуждению и к передаче возбуждения от одних участков к соседним с ними. Примерно раз в секунду волна возбуждения пробегает по нашей сердечной мышце, заставляя ее сокращаться и гнать кровь по всему телу. По нервным волокнам возбуждение, распространяясь от периферии (органов чувств) к спинному и головному мозгу, информирует нас о внешнем мире, а в обратном направлении идут возбуждения-команды, предписывающие мышцам те или иные действия.

Возбуждение в нервной клетке может возникнуть само по себе (как говорят, «спонтанно»), под действием возбужденной соседней клетки или же под влиянием какого-либо внешнего сигнала, скажем, электрического раздражения, идущего от некоторого источника тока. Перейдя в возбужденное состояние, клетка пребывает в нем некоторое время, а затем возбуждение исчезает, после чего наступает определенный период невосприимчивости клетки к новым раздражениям - так называемый рефрактерный период. В течение этого периода клетка не реагирует на поступающие к ней сигналы. Затем клетка снова переходит в первоначальное состояние, из которого возможен переход в состояние возбуждения. Таким образом, возбуждение нервных клеток обладает рядом четко выраженных свойств, отправляясь от которых можно построить аксиоматическую модель этого явления. Далее для исследования этой модели могут быть применены чисто математические методы.

Представления о такой модели были развиты несколько лет тому назад в работах И. М. Гельфанда и М. Л. Цетлина, продолженных затем рядом других авторов. Сформулируем аксиоматическое описание модели, о которой идет речь.

Будем под «возбудимой средой» понимать некоторое множество X элементов («клеток»), обладающих следующими свойствами:

1.Каждый элемент может находиться в одном из трех состояний: покой, возбуждение и рефрактерность;

2.От каждого возбужденного элемента возбуждение распространяется по множеству элементов, находящихся в покое, с некоторой скоростью v ;

3.Если элемент х не был возбужден в течение некоторого определенного времени Т(х) , то по прошествии этого времени он самопроизвольно переходит в возбужденное состояние. Время Т(х) называется периодом спонтанной активности элемента х . При этом не исключается и тот случай, когда Т(х)= ∞ , т. е. когда спонтанная активность на самом деле отсутствует;

4.Состояние возбуждения длится некоторое время τ (которое может зависеть от х ), потом элемент переходит на время R(x) в рефрактерное состояние, после чего наступает состояние покоя.

Похожие математические модели возникают и в совсем других областях, например в теории горения, или в задачах о распространении света в неоднородной среде. Однако наличие «периода рефрактерности» является характерной чертой именно биологических процессов.

Описанную модель можно исследовать или аналитическими методами, или с помощью реализации ее на вычислительной машине. В последнем случае мы, понятно, вынуждены считать, что множество X (возбудимая среда) состоит из некоторого конечного числа элементов (в соответствии с возможностями существующей вычислительной техники - порядка нескольких тысяч). Для аналитического исследования естественно предполагать X некоторым непрерывным многообразием (например, считать, что X - это кусок плоскости). Простейший случай такой модели получается, если принять за X некоторый отрезок (прототип нервного волокна) и предположить, что время, в течение которого каждый элемент находится в возбужденном состоянии, очень мало. Тогда процесс последовательного распространения импульсов по такому «нервному волокну» может быть описан цепочкой обыкновенных дифференциальных уравнений первого порядка. Уже в этой упрощенной модели воспроизводится ряд особенностей процесса распространения, обнаруживаемых и в реальных биологических экспериментах.

Весьма интересен как с теоретической, так и с прикладной медицинской точки зрения вопрос об условиях возникновения в такой модельной активной среде так называемой фибрилляции. Это явление, наблюдаемое экспериментально, например на сердечной мышце, состоит в том, что вместо ритмических согласованных сокращений в сердце возникают беспорядочные локальные возбуждения, лишенные периодичности и нарушающие его функционирование. Впервые теоретическое исследование этой проблемы было предпринято в работе Н. Винера и А. Розенблюта в 50-х годах. В настоящее время работы в этом направлении интенсивно ведутся у нас и дали уже ряд интересных результатов.

ЛЕКЦИЯ 1
ВВЕДЕНИЕ. МАТЕМАТИЧЕСКИЕ МОДЕЛИ В БИОЛОГИИ

Понятие модели. Объекты, цели и методы моделирования. Модели в разных науках. Компьютерные и математические модели. История первых моделей в биологии. Современная классификация моделей биологических процессов. Регрессионные, имитационные, качественные модели. Принципы имитацуионного моделирования и примеры моделей. Специфика моделирования живых систем.

Компьютеры в современном мире стали привычными для человеческой деятельности: в финансовой сфере, в бизнесе, промышленности, образовании, сфере досуга. Благодаря компьютерам западной цивилизации удалось существенно продвинуться в следующих направлениях.

  • Автоматизация трудовой деятельности во всех сферах
  • Информационная революция. Возможность хранить и структурировать огромные и самые разнообразные массивы информации и производить быстрый и эффективный поиск необходимой информации.
  • Прогнозирование. Компьютер позволяет строить имитационные модели сложных систем, проигрывать сценарии и делать прогнозы.
  • Оптимизация. Любая человеческая деятельность, в том числе обыденная жизнь требует постоянной оптимизации действий. В процессе эволюции сформировались биологические системы, которые оказываются оптимальными в том или ином смысле, например, в смысле наиболее экономичного использования энергии. Для того чтобы формализовать целевую функцию, то есть ответить на вопрос, что же является для системы оптимальным, необходимо сформулировать модель оптимизируемого процесса и критерии оптимизации. Компьютер позволяет проектировать и реализовать различные алгоритмы оптимизации.

Компьютер работает не с самой системой, а с моделью. Что же такое МОДЕЛЬ?

Наиболее простой и общий ответ на этот вопрос: модель — это копия объекта, в некотором смысле «более удобная», допускающая манипуляции в пространстве и во времени.

При моделировании, выборе и формулировке модели, определяющими обстоятельствами являются объект, цель и метод (средства) моделирования.
В нашем курсе объектами моделирования будут биологические процессы разного уровня организации.

Методами моделирования служат методы динамической теории систем. Средства — дифференциальные и разностные уравнения, методы качественной теории дифференциальных уравнений, компьютерная симуляция.

Цели моделирования:

  1. Выяснение механизмов взаимодействия элементов системы
  2. Идентификация и верификация параметров модели по экспериментальным данным.
  3. Оценка устойчивости системы (модели). Само понятие устойчивости требует формализации.
  4. Прогноз поведения системы при различных внешних воздействиях, различных способах управления и проч.
  5. Оптимальное управление системой в соответствии с выбранным критерием оптимальности.

Примеры моделей.
1. Портрет дамы.

Пусть некто заказывает художнику написать портрет любимой женщины. Рассмотрим объект, метод (средства) и цель моделирования.
Объектом моделирования является женщина.

Метод (средства) — краски, кисти, холст. Эмаль, если портрет будет сделан на медальоне, как это было принято в прошлые века. Фотоаппарат и пленка. Рекламный щит, если некто хочет, чтобы его даму видели все, кто проезжает по оживленной магистрали. Обложка журнала, или экран телевизора. Наконец, сам художник, фотограф или рекламное агентство в лице своих дизайнеров.

Цель. При моделировании целью, как правило, является манипуляция с пространством и временем. Сохранить облик дамы во времени. Повесить портрет в гостиной, или медальон с изображением любимой — на шею, как это делали в старину. Чтобы потомки восхищались красотой дамы и своим пращуром, которому удалось запечатлеть такую красоту.
Другая цель — воспроизведение изображения (модели) объекта с целью сделать модель доступной некоторому кругу людей. Или многократно тиражировать, если некто хочет, чтобы образ дамы увидели миллионы.

2. Самолет в аэродинамической трубе. Помещая самолет в аэродинамическую трубу и испытывая его в различных воздушных потоках, мы решаем задачу взаимодействия системы с внешней средой. Это еще одна очень важная цель моделирования. При этом в корпусе самолета не обязательно должны находиться кресла, и тем более, стюардессы. Какие из свойств объекта необходимо учесть, а какие можно опустить, степень подробности воспроизведения моделью объекта, определяется теми вопросами, на которые хотят ответить с помощью модели.

3. Аквариум является примером физического моделирования. В аквариуме можно моделировать водную экосистему — речную, озерную, морскую, заселить ее некоторыми видами фито- и зоопланктона, рыбами, поддерживать определенный состав воды, температуру, даже течения. И строго контролировать условия эксперимента. Какие компоненты естественной системы будут воспроизведены, и с какой точностью, зависит от цели моделирования.

4. Выделенные из листьев хлоропласты. На выделенных системах часто изучают процессы, происходящие в живой системе, в этом смысле фрагмент является моделью целой живой системы. Выделение более простой системы позволяет исследовать механизмы процессов на молекулярном уровне. При этом исключается регуляция со стороны более высоких уровней организации, в данном случае, со стороны растительной клетки, листа, наконец, целого растения. В большинстве случаев наблюдать процессы на молекулярном уровне в нативной (ненарушенной) системе не представляется возможным. Говорят, что изученные на выделенном хлоропласте первичные процессы фотосинтеза являются моделью первичных процессов фотосинтеза в живом листе. К сожалению, этот метод фрагментирования приводит к тому, что «…живой ковер жизни распускается по ниточкам, каждая ниточка досконально изучается, но волшебный рисунок жизни оказывается утрачен» (лауреат Нобелевской премии по биохимии Л. Поллинг).

5. Бислойная липидная мембрана. Еще «более модельным» примером является изучение процессов ионного трансмембранного переноса на искусственной бислойной липидной мембране. Понятно, что в реальных биологических объектах мембраны чаще всего не бислойные, а многослойные, содержат встроенные белки и другие компоненты, поверхность их не является плоской и обладает множеством других индивидуальных особенностей. Однако, чтобы изучить законы образования поры, через которую ион проходит сквозь мембрану внутрь клетки или органеллы, необходимо создать «чистую», «модельную» систему, которую можно изучать экспериментально, и для которой можно использовать хорошо разработанное наукой физическое описание.

6. Популяция дрозофилы , является классическим объектом моделирования микроэволюционного процесса и примером исключительно удачно найденной модели. Еще более удобной моделью являются вирусы, которые можно размножать в пробирке. Хотя не вполне ясно, справедливы ли эволюционные закономерности, установленные на вирусах, для законов эволюции высших животных. В лекции 11 мы увидим, что хорошей моделью микроэволюционных процессов являются также микробные популяции в проточном культиваторе.
Из приведенных примеров видно, что любая физическая модель обладает конкретными свойствами физического объекта. В этом ее преимущества, но в этом и ее ограничения.

Компьютерные модели содержат «знания» об объекте в виде математических формул, таблиц, графиков, баз данных и знаний. Они позволяют изучать поведение системы при изменении внутренних характеристик и внешних условий, проигрывать сценарии, решать задачу оптимизации. Однако каждая компьютерная реализация соответствует конкретным, заданным параметрам системы. Наиболее общими и абстрактными являются математические модели.

Математические модели описывают целый класс процессов или явлений, которые обладают сходными свойствами, или являются изоморфными. Наука конца 20 века — синергетика, показала, что сходными уравнениями описываются процессы самоорганизации самой разной природы: от образования скоплений галактик до образования пятен планктона в океане.

Если удается сформулировать «хорошую» математическую модель, для ее исследования можно применить весь арсенал науки, накопленный за тысячелетия. Недаром многие классики независимо высказывали одну и ту же мудрую мысль:

«Область знания становится наукой, когда она выражает свои законы в виде математических соотношений»

С этой точки зрения самая «научная» наука? физика. Она использует математику в качестве своего естественного языка. Все физические законы выражаются в виде математических формул или уравнений.

В химию математика пришла в тридцатые годы 20 века вместе с химической кинетикой и физической химией. Сейчас книги по химии, в особенности по химической кинетике, физической химии, квантовой химии полны математическими символами и уравнениями.

Чем более сложными являются объекты и процессы, которыми занимается наука, тем труднее найти математические абстракции, подходящие для описания этих объектов и процессов. В биологию, геологию и другие «описательные науки» математика пришла по настоящему только во второй половине 20 века.

Первые попытки математически описать биологические процессы относятся к моделям популяционной динамики. Эта область математической биологии и в дальнейшем служила математическим полигоном, на котором «отрабатывались» математические модели в разных областях биологии. В том числе модели эволюции, микробиологии, иммунологии и других областей, связанных с клеточными популяциями.

Самая первая известная модель, сформулированная в биологической постановке, ? знаменитый ряд Фибоначчи, который приводит в своем труде Леонардо из Пизы в 13 веке. Это ряд чисел, описывающий количество пар кроликов, которые рождаются каждый месяц, если кролики начинают размножаться со второго месяца и каждый месяц дают потомство в виде пары кроликов. Ряд представляет последовательность чисел:

5, 8, 13, 21, 34, 55, 89,….,

Риc1.1. Ряд Фибоначчи

Следующая известная истории модель — модель Мальтуса (1798), описывающая размножение популяции со скоростью, пропорциональной ее численности. В дискретном виде этот закон представляет собой геометрическую прогрессию:

Здесь r — коэффициент, аналогичный коэффициенту q в дискретной модели — константа собственной скорости роста популяции, отражающая ее генетический потенциал.

На этих простейших моделях видно, насколько примитивны математические модели по сравнению с биологическими объектами, каждый из которых, к примеру, популяция, ? это совокупность сложно организованных индивидуальных особей? организмов. В свою очередь каждый организм состоит из органов, тканей и клеток, осуществляет процессы метаболизма, двигается, рождается, растет, размножается, стареет и умирает. И каждая живая клетка? сложная гетерогенная система, объем которой разграничен мембранами и содержит субклеточные органеллы, и так далее, вплоть до биомакромолекул, аминокислот и полипептидов. На всех уровнях живой материи мы встречаем сложную пространственно-временную организацию, гетерогенность, индивидуальность, подвижность, потоки массы, энергии и информации.

Ясно, что для таких систем любая математика дает лишь грубое упрощенное описание. Дело существенно продвинулось с использованием компьютеров, которые позволяют имитировать достаточно сложные системы, однако и здесь, как правило, речь идет именно о моделях, т.е. о некоторых идеальных копиях живых систем, отражающих лишь некоторые их свойства, причем схематически.

Сейчас биологические журналы полны математическими формулами и результатами компьютерных симуляций. Имеются специальные журналы, посвященные работам в области математических моделей: Theoretical Biology; Biosystems; Mathematical Ecology, Mathematical biology, Biological systems etc. Работы по математическому моделированию печатаются практически во всех российских биологических журналах: Общая биология, Биофизика, Экология, Молекулярная биология, Физиология растений и других.

В основном, модели являются инструментом изучения конкретных систем, и работы по моделированию печатают в журналах, посвященных той области биологии, к которой относится объект моделирования. Это означает, что модель должна быть интересна, полезна и понятна специалистам-биологам. В то же время она должна быть, естественно, профессионально сделана с точки зрения математики.

Наиболее успешные модели сделаны в содружестве специалистов математиков, или физиков, и биологов, хорошо знающих объект моделирования. При этом наиболее трудная часть совместной работы? это формализация знаний об объекте (как правило, в виде схемы) на языке, который может затем быть переформулирован в математическую или компьютерную модель.

Условно все математические модели биологических систем можно разделить на регрессионные, качественные и имитационные.
Регрессионные зависимости? это формулы, описывающие связь различных характеристик системы, не претендуя на физический или биологический смысл этих зависимостей. Для построения регрессионной модели достаточно статистически достоверных наблюденных корреляций между переменными или параметрами системы.

ПРИМЕРЫ
1. Зависимость между количеством производителей хамсы S и количеством молоди от каждого нерестившегося производителя в Азовском море
(используется в большой имитационной модели динамики рыбного стада Азовского моря, Горстко, 1985):

Y поглощение кислорода, измеренное в мкл(0,25 г)-1ч-1.
D — число дней, в течение которых выдерживались образцы,
B — процентное содержание влаги в образцах,
Т — температура, измеренная в град.С.

Эта формула дает несмещенные оценки для скорости поглощения кислорода во всем диапазоне дней, температур и влажностей, которые наблюдались в эксперименте, со средним квадратичным отклонением в поглощении кислорода, равном s =0.319±0.321.

Коэффициенты в регрессионных моделях обычно определяются с помощью процедур идентификации параметров моделей по экспериментальным данным. При этом чаще всего минимизируется сумма квадратов отклонений теоретической кривой от экспериментальной для всех точек измерений. Т.е. коэффициенты модели подбираются таким образом, чтобы минимизировать функционал:

Здесь i ? номер точки измерения,
xe ? ‘экспериментальные значения переменных,
хt ? теоретические значения переменных,
a1, a2… ? параметры, подлежащие оценке,
wi ? «вес» i-го измерения,
N ? число точек измерения.

Имитационные модели (simulation)
По меткому выражению Р. Шеннона (1978) имитационное моделирование? это нечто промежуточное между искусством и наукой, направление, появление которого целиком обязано бурному росту возможностей вычислительной техники.

Суть имитационного моделирования заключается в исследовании сложной математической модели с помощью вычислительных экспериментов и обработки результатов этих экспериментов. При этом, как правило, создатели имитационной модели пытаются максимально использовать всю имеющуюся информацию об объекте моделирования, как количественную, так и качественную.

Грубо говоря, процесс построения имитационной модели можно представить следующим образом. Мы записываем в любом доступном для компьютера формализованном виде (в виде уравнений, графиков, логических соотношений, вероятностных законов) все, что знаем о системе, а потом проигрываем на компьютере варианты того, что может дать совокупность этих знаний при тех или иных значениях внешних и внутренних параметров системы.
Если вопросы, задаваемые нами модели, относятся не к выяснению фундаментальных законов и причин, определяющих динамику реальной системы, а к бихевиористскому (поведенческому) анализу системы, как правило, выполняемому в практических целях, имитационная модель оказывается исключительно полезной.

Особенно привлекательным оказалось применение имитационных моделей для описания экологических систем — необычайно сложных образований, включающих множество биологических, геологических, метеорологических и прочих факторов. Благодаря возможности проигрывать различные «сценарии» поведения и управления имитационная модель может быть успешно использована для выбора оптимальной стратегии эксплуатации природной экосистемы или оптимального способа создания искусственной экосистемы.

При создании имитационной модели можно позволить себе высокую степень подробности при выборе переменных и параметров модели. При этом модель может получиться разной у различных авторов, поскольку точные формальные правила ее построения отсутствуют. Результаты машинных экспериментов зависят не только от заложенных в модели соотношений, но и от организации комплекса реализующих в модель программ, и от механизма проведения машинных экспериментов. Поэтому воплощением идеи имитационного моделирования следует считать систему человек — машина, обеспечивающую проведение имитационных экспериментов в режиме диалога между лицом, проводящим эксперимент, и «машиной», т.е. комплексом программ.
Основные этапы построения имитационной модели следующие.

Формулируются основные вопросы о поведении сложной системы, ответы на которые мы хотели бы получить. В соответствии с задачами моделирования задается вектор состояния системы. Вводится системное время, моделирующее ход времени в реальной системе. Временной шаг модели также определяется целями моделирования.

Производится декомпозиция системы на отдельные блоки, связанные друг с другом, но обладающие относительной независимостью. Для каждого блока определяют, какие компоненты вектора состояния должны преобразовываться в процессе его функционирования.

Формулируют законы и гипотезы, определяющие поведение отдельных блоков и связь этих блоков друг с другом. Для каждого блока множество законов функционирования дополняется множеством логических операторов, формализующих опыт наблюдения за динамикой процессов в. системе. При необходимости вводится «внутреннее системное время» данного блока модели, позволяющее моделировать более быстрые или более медленные процессы. Если в блоке используются случайные параметры, задаются правила отыскания на каждом шаге некоторых их реализаций. Разрабатываются программы, соответствующие отдельным блокам.
Каждый блок верифицируется по фактическим данным, и при этом его информационные связи с другими блоками «замораживаются». Обычно последовательность действий при верификации блоков такова: часть имеющейся информации используется для оценки параметров модели, а затем по оставшейся части информации сравнением расчетных данных с фактическими проверяется адекватность модели.\

Производится объединение разработанных блоков имитационной модели на базе стандартного или специально созданного математического обеспечения. Апробируются и отрабатываются различные схемы взаимодействия блоков. На этом этапе всю «большую модель» удобно рассматривать как комплекс автоматов с памятью или без нее, детерминированных или стохастических. Работа с моделью тогда представляет собой изучение коллективного поведения автоматов в случайной или детерминированной среде.

Производятся верификация имитационной модели в целом и проверка ее адекватности. Этот процесс еще менее может быть формализован, чем верификация отдельных блоков. Здесь решающими оказываются знания экспертов — специалистов, хорошо знающих реальную систему.

Планируются эксперименты с моделью. При анализе их результатов используются статистическая обработка информации, графические формы выдачи данных и пр. Результаты экспериментов пополняют информационный фонд (банк данных) и используются при дальнейшей работе с моделью.

На каждом из этапов могут возникнуть трудности, для преодоления которых необходимо перестраивать модель, расширять список фазовых переменных, уточнять вид их взаимодействий. По существу, создание имитационной модели включает путь последовательных приближений, в процессе которых получается новая информация об объекте моделирования, усовершенствуется система наблюдений, проверяются гипотезы о механизмах тех или иных процессов в рамках общей имитационной системы.

Таким образом, основные задачи имитационного моделирования:

  1. проверка гипотез о взаимодействии отдельных элементов и подсистем;
  2. прогноз поведения при изменении внутренних характеристик и внешних условий;
  3. оптимизация управления.

Ясно, что разработка имитационной модели сложной системы и работа с этой моделью требуют усилий целого коллектива специалистов, как в области машинной математики, так и в предметной области.

К настоящему времени в литературе имеются тысячи имитационных моделей биологических систем самого разного уровня, многие модели представлены в ИНТЕРНЕТ.

ПРИМЕРЫ
Молекулярная динамика.

Основные принципы построения моделей и результаты молекулярной динамики представлены на сайте www.biophys.ru/ Информационная система Российская биофизика. Биофизическое образование.

На протяжении всей истории западной науки стоял вопрос о том, можно ли, зная координаты всех атомов и законы их взаимодействия, описать все процессы, происходящие во Вселенной. Вопрос не нашел своего однозначного ответа. Квантовая механика утвердила понятие неопределенности на микроуровне. В лекциях 10-12 мы увидим, что существование квазистохастических типов поведения в детерминированных системах делает практически невозможным предсказание поведения некоторых детерминированных систем и на макроуровне.

Следствием первого вопроса является второй: вопрос «сводимости». Можно ли, зная законы физики, т.е. законы движения всех атомов, входящих в состав биологических систем, и законы их взаимодействия, описать поведение живых систем. В принципе, на этот вопрос можно ответить с помощью имитационной модели, в которую заложены координаты и скорости движения всех атомов какой-либо живой системы и законы их взаимодействия. Для любой живой системы такая модель должна содержать огромное количество переменных и параметров и практически неосуществима, но попытки моделировать с помощью такого подхода функционирование элементов живых систем? биомакромолекул делаются, начиная с 70-х годов.

«Молекулярная динамика» — весьма быстро и активно развивающееся направление науки. Функциональные свойства белков, в том числе их ферментативная активность, определяются их способностью к конформационным перестройкам. Внутренние движения атомов и атомных групп глобулярных белков происходят с характерными временами порядка 10-13 ? 10-15с амплитудой порядка 0,02 нм. Существенные изменения конформации, например, открытие «кармана» реакционного центра для образования фермент-субстратного комплекса, требует коллективных согласованных движений, характерные времена которых на много порядков больше, а амплитуды составляют десятки ангстрем. Проследить, каким образом физические взаимодействия отдельных атомов реализуются в виде макроскопических конформационных движений стало возможным благодаря методам молекулярной динамики.

Начальные координаты и скорости частиц задаются с учетом данных рентгеновской спектроскопии и ядерного магнитного резонанса. Значения параметров атом?атомных взаимодействий определяются эмпирически из условия максимального соответствия рассчитанных по потенциалу и экспериментально измеренных спектральных, термодинамических, и структурных характеристик низкомолекулярных компонент биологических макромолекул.
На экране компьютера можно наблюдать траектории отдельных атомов и внутреннюю подвижность макромолекулы.

Первые вычислительные эксперименты для белковой молекулы? ингибитора трипсина панкреатической железы? были проведены по методу молекулярной динамики в 1977 г. Дж.А.Мак-Кэмоном с сотрудниками. Молекула состоит из 58 аминокислотных остатков и содержит 454 тяжелых атома, в структуру также включали четыре внутренних молекулы воды, локализованные согласно кристаллографическим данным. Удалось воспроизвести основной элемент вторичной структуры белка? антипараллельную скрученную b?структуру, а также короткий a?спиральный сегмент.

В последние годы выполнены расчеты молекулярной динамики сотен белков, среди них миоглобина, лизоцима, ретиналь связывающего белка, моделировали также перенос электрона в белковых комплексах. В расчетах наблюдалась значительная подвижность области белок?белкового контакта, в том числе перемещение ароматической группы белка в область контакта за времена 100 пс. Результаты молекулярной динамики подтверждают роль флуктуаций в электронно-конформационных взаимодействиях, сопровождающих процессы транспорта электронов, миграции и трансформации энергии, ферментативного катализа.

2. Модели систем организма.

В настоящее время имеются имитационные модели многих систем организма — сердца, желудочно-кишечного тракта, почек, печени, мозга, и других.

3. Модели продукционного процесса растений.

Имитационные модели продукционного процесса растений (агробиоценозов) для разных культур являются одними из первых имитационных моделей. Практическая задача моделирования? выбор оптимальной стратегии проведения сельскохозяйственных мероприятий: орошения, полива, внесения удобрений с целью получения максимального урожая. Существует большое число моделей разных культур, как упрощенных, предназначенных для решения конкретных вопросов управления, так и очень подробных, используемых в основном для исследовательских целей. Подробные модели имеют иерархическую блочную структуру. Среди биотических процессов выделяют блок фотосинтеза, блок корневого питания, блок роста и развития, блок почвенной микрофлоры, блок развития болезней сельскохозяйственной культуры и другие. Рассматриваются также геофизические процессы: формирование теплового и водного режима, концентрации и передвижения биогенных и токсических солей, концентрации СО2 в посеве и других. Методику работы с такими сложными моделями мы рассмотрели выше. Более подробное описание моделей продукционного процесса растений можно найти в книгах:

  1. .Бондаренко Н.Ф. «Моделирование продуктивности агроэкосистем». Л., 1982;
  2. Заславский Б.Г., Полуэктов Р.А. Управление экологическими системами. М..1988
  3. Торнли Дж. Математические модели в физиологии растений. Киев, 1982
  4. Франс Дж., Торнли Дж. «Математические модели в сельском хозяйстве», М., 1987;
  5. Vries de P. Simulation of plant growth and crop production/ Wageningen, 1982.
  6. Wit C.T. Simulation of assimilation, respiration, and transpiration of crops, Wageningen, 1978

Kниги 3-6 имели несколько более поздних переизданий на Западе.

4. Модели водных экосистем.

Водная среда гораздо более однородна, чем сухопутные биогеоценозы, и имитационные модели водных систем успешно создаются начиная с 70-х годов 20 века. Описание обменных процессов в водной среде включает описание усвоения азота, фосфора и других биогенных элементов, рост фито- и зоопланктона и детрита. При этом важно учитывать гидробиологические процессы в рассматриваемых водоемах, которые, как правило, являются неоднородными и при моделировании разбиваются на ряд компартментов.

С помощью имитационного моделирования решались вопросы выработки стратегии борьбы с эфтрификацией закрытых водоемов, в частности, одного из Великих Американских озер — Озера Эри. Много имитационных моделей посвящено разработке оптимальной стратегии вылова рыбы.
Пионерскими в этой области были книги:

Меншуткин В.В. Математическое моделирование популяций и сообществ водных животных, Л., 1971
Jorgensen S.E. Lake management. Oxford, 1980
Экологические системы. Адаптивная оценка и управление. (под ред Э.Холлинга), М., 1981
Горстко А.Б., Домбровский Ю.А., Сурков Ф.А. Методы управления эколого-эконоическими. М., 1985
Основные идеи и результаты по моделированию водных систем, так же как и по моделированию продукционного процесса растений изложены в учебном пособии Г.Ю.Ризниченко, А.Б.Рубин «Математические модели биологических продукционных процессов». М., 1993. Готовится к печати дополненное и переработанное издание

Модели глобальной динамики сыграли особую роль в становлении имитационного моделирования. Именно для этих моделей был разработан формализм представления системы в виде узлов и потоков между ними, который затем в разных видах использовался практически во всех моделях сложных систем. Первая глобальная модель была создана Д. Форрестером и Д. Медоузом с соавторами по заказу Римского клуба в 60 годы 20 века.

Полученные с ее помощью результаты были опубликованы в знаменитой переведенной на 35 языков книге «Пределы роста», и впервые послужили предостережением человечеству в том, что Земля — ограниченная система, безудержный прогресс ведет к истощению ее ресурсов, и человечество ждет глобальный экологический кризис. . Современное состояние проблемы описано в книге Д.Х.Медоуз, Д.Л.Медоуз, Й.Рандерс «За пределами роста» М., Прогресс. 1994. (Donella H.Meadows et.al Beyond the Limits, (Confronting global collapse. Envisioning a sustainable future.1992)

Вторая знаменитая глобальная модель — модель ядерной зимы, была создана под руководством Н.Н. Моисеева в России. Ее результаты наглядно показали, что глобальная ядерная война приведет к уничтожению как побежденных, так и победителей, так как после нее небо над всей Землей закроется тучами и настанет ядерная зима на период в несколько десятков лет. Поэтому победа в такой войне будет быссмысленной.

В настоящее время активно разрабатываются глобальные модели, позволяющие рассчитать «парниковый эффект» и другие процессы, протекающие в глобальном масштабе.

Ясно, что разработка имитационной модели сложной системы и работа с этой моделью требуют усилий целого коллектива специалистов как в области машинной математики, так и в предметной области. Подробное изучение методологии имитационного моделирования не входит в задачу нашего курса, мы будем заниматься более общими вопросами.

Всякая сложная система при своем функционировании подчиняется физическим, химическим и биологическим законам. Однако нам известны не все законы. Одна из целей математического моделирования и заключается в установлении этих законов путем проверки альтернативных гипотез физических (или биологических) механизмов того или иного явления.

Другой, более практической, является уже упоминаемая нами цель оптимального управления продукционным процессом.

Таким образом, приступая к построению математической модели системы, необходимо взглянуть на эту систему под определенным углом зрения, который в значительной мере определяет вид модели. Необходимо сформулировать основные вопросы о поведении системы, ответы на которые мы хотим получить с помощью модели. Это позволяет из множества законов, управляющих поведением системы, отобрать те, влияние которых существенно при поиске ответов на поставленные вопросы. В дополнение к этим законам, если необходимо, для системы в целом или ее частей формулируются определенные гипотезы о функционировании. Гипотезы, как и законы, формулируются в виде определенных математических соотношений.

Дальнейшая работа состоит в исследовании полученных соотношений с применением аналитических или вычислительных методов, приводящих к ответу на поставленные перед моделью вопросы. Если модель хороша, полученные на модели ответы могут быть отнесены к самой моделируемой системе. Более того, с помощью такой модели можно расширить круг представлений о системе, например, выбрав одну из альтернативных гипотез о механизмах ее функционирования и отбросив остальные, неправдоподобные. Если же модель плохая, т.е. недостаточно адекватно описывает систему с точки зрения поставленных перед ней вопросов, ее следует усовершенствовать. Критерием адекватности служит практика, эксперимент, и критерий этот не может быть полностью формализован.

Специфика моделей живых систем

Несмотря на разнообразие живых систем, все они обладают следующими специфическими чертами, которые необходимо учитывать при построении моделей.

1. Сложные системы. Все биологические системы являются сложными многокомпонентными, пространственно структурированными, элементы которых обладают индивидуальностью. При моделировании таких систем возможно два подхода. Первый — агрегированный, феноменологический. В соответствии с этим подходом выделяются определяющие характеристики системы (например, общая численность видов) и рассматриваются качественные свойства поведения этих величин во времени (устойчивость стационарного состояния, наличие колебаний, существование пространственной неоднородности). Такой подход является исторически наиболее древним и свойственен динамической теории популяций.

Другой подход? подробное рассмотрение элементов системы и их взаимодействий, рассмотренное выше имитационное моделирование,. Имитационная модель не допускает аналитического исследования, но ее параметры имеют ясный физический и биологический смысл, при хорошей экспериментальной изученности фрагментов системы она может дать количественный прогноз ее поведения при различных внешних воздействиях.

2. Размножающиеся системы (способные к авторепродукции). Это важнейшее свойство живых систем определяет их способность перерабатывать неорганическое и органическое вещество для биосинтеза биологических макромолекул, клеток, организмов. В феноменологических моделях это свойство выражается в наличии в уравнениях автокаталитических членов, определяющих возможность роста (в нелимитированных условиях? экспоненциального), возможность неустойчивости стационарного состояния в локальных системах (необходимое условие возникновения колебательных и квазистохастических режимов) и неустойчивости гомогенного стационарного состояния в пространственно распределенных системах (условие неоднородных в пространстве распределений и автоволновых режимов).

Важную роль в развитии сложных пространственно-временных режимов играют процессы взаимодействия компонентов (биохимические реакции) и процессы переноса, как хаотического (диффузия), так и связанного с направлением внешних сил (гравитация, электромагнитные поля) или с адаптивными функциями живых организмов (например, движение цитоплазмы в клетках под действием микрофиламентов).

3. Открытые системы, постоянно пропускающие через себя потоки вещества и энергии. Биологические системы далеки от термодинамического равновесия, и потому описываются нелинейными уравнениями. Линейные соотношения Онзагера, связывающие силы и потоки, справедливы только вблизи термодинамического равновесия.

4. Биологические объекты имеют сложную многоуровневую систему регуляции. В биохимической кинетике это выражается в наличии в схемах петель обратной связи, как положительной, так и отрицательной. В уравнениях локальных взаимодействий обратные связи описываются нелинейными функциями, характер которых определяет возможность возникновения и свойства сложных кинетических режимов, в том числе колебательных и квазистохастических.

Такие нелинейности при учете пространственного распределения и процессов переноса обусловливают паттерны стационарных структур (пятна различной формы, периодические диссипативные структуры) и различные типы автоволнового поведения (движущиеся фронты, бегущие волны, ведущие центры, спиральные волны и др.)

На уровне органа, организма, популяции живая система также является гетерогенной, и это ее основополагающее свойство необходимо учитывать при создании математической модели. Само возникновение пространственной структуры и законы ее формирования представляет одну из задач теоретической биологии. Один из подходов решения такой задачи? математическая теория морфогенеза.

В заключение этой вводной лекции отметим, что компьютерные грамматики позволяют получить изображения, очень напоминающие те, которые мы видим в природе и на картинах великих мастеров. Вероятно, компьютерная логика, человеческий мозг и вся природа следуют единым законам.

Литература

Бондаренко Н.Ф. «Моделирование продуктивности агроэкосистем». Л., 1982;
Горстко А.Б., Домбровский Ю.А., Сурков Ф.А. Модели управления эколого-экономическими системами. М., 1984.
Джефферс Д.»Введение в системный анализ: применение в экологии», М., 1981
Заславский Б.Г., Полуэктов Р.А. Управление экологическими системами. М..1988
Медоуз Д.Х,.Медоуз Д.Л, Рандерс Й. «За пределами роста» М., Прогресс. 1994.
Ризниченко Г.Ю., Рубин А.Б. Математические модели биологических продукционных процессов. М., Изд. МГУ, 1988
Рубин А.Б. Биофизика. Часть 1., М., 1999
Торнли Дж. Математические модели в физиологии растений. Киев, 1982
Франс Дж., Торнли Дж. «Математические модели в сельском хозяйстве», М., 1987;
Meadows Donella H. et.al. The Limits of the Growth. N.-Y. Universe Books. 1972, перевод на русский язык 1991 г
.Meadows Donella H et.al Beyond the Limits, (Confronting global collapse. Envisioning a sustainable future.1992)
Vries de P. Simulation of plant growth and crop production/ Wageningen, 1982.
Wit C.T. Simulation of assimilation, respiration, and transpiration of crops, Wageningen, 1978

Едва ли кто из биологов отрицает необходимость использования математических методов в биологических исследованиях, в частности для по пул яцио иного анализа. Однако в понимании того, какое место занимает математический анализ в биологии, существуют разные, иногда противоположные точки зрения. Одни считают, что важнейшая задача - это "познание поведения популяции как статистического агрегата" (Beverton a. Holt, 1957; Graham, 1956). Согласно этой точке зрения, задача биолога сводится к статистическому анализу и ограничивается установлением различных коррелятивных связей. Теоретической основой такой точки зрения служит высказывание Бертрана Рассела, что "биологические законы... подобно законам квантовой теории являются законами дискретными и статистическими" (Рассел, 1957, с. 69).

Другие исходят из того, что математический анализ в биологии, включая и популяционные исследования, необходим, но только как промежуточный, а не конечный этап исследования. Эта вторая точка зрения базируется на представлении о специфичности форм движения материи. В популяционном анализе это направление конечную задачу исследования видит в выявлении приспособительной сущности, познании причин биологического явления. С этих позиций мы и подходим к использованию математических моделей при изучении закономерностей динамики популяций.

Математическое моделирование - это метод, при помощи которого возможно выявить механизм процесса и понять его структурные особенности - установить параметры анализируемой совокупности. Математическое моделирование при наличии большого цифрового материала позволяет использовать счетно-решающие и моделирующие устройства для более быстрой и надежной обработки материала и для более разностороннего и объективного анализа собранных данных.

Очень важная задача, которая позволяет широко применять математические модели, - это разработка методики и составление прогнозов колебаний численности и возможных уловов промысловых рыб, а также расчет оптимальных режимов эксплуатации промысловых рыб, таких режимов, которые обеспечивали бы регулярное из года в год получение наибольшего количества рыбной продукции наиболее высокого качества. В настоящее время на выполнение этих задач, особенно на составление прогнозов возможных уловов отдельных промысловых рыб, расходуется огромное количество сил и времени, а результаты далеко не всегда оказываются достаточно точными. Поэтому крайне важно максимально упростить и механизировать процессы составления прогнозов и расчет режима эксплуатации стад промысловых рыб, обеспечив при этом высокую точность этих расчетов.

Использование в исследовательских целях быстродействующих электронных вычислительных машин позволяет значительно расширить объем исследований и подойти к разработке таких вопросов популяционной экологии, решение которых до появления ЭВМ было невозможным.

Метод математического моделирования

Широкое использование ЭВМ во всех областях исследований, включая ихтиологические, позволяет сильно их ускорить и достигнуть высокой точности получаемых результатов.

Однако, чтобы в популяционном анализе можно было использовать ЭВМ, необходимо составить программы, правильно отражающие ход интересующего нас процесса. Это в первую очередь совокупность правил и указаний для преобразования интересующих нас величин (алгоритм процесса), которая может включать зависимости как в виде уравнений, так и непосредственно в виде таблиц и графиков. Однако для получения "работающей" математической модели процесса необходимо, чтобы она была основана на тех причинных связях, на тех внутренних противоречиях, которые отражают действительную сущность развития биологического явления, а не на внешних случайных связях, подчиняющихся только статистическим закономерностям и не отражающих сущности явления. И естественно, что как у нас, так и за рубежом (Regier, 1970) при популяционном анализе все шире применяются модели, в основу которых положено представление о популяции как саморегулирующейся открытой системе, построенной по принципу обратных связей - плюс-минус взаимодействия.

Наличие в замкнутом контуре связей разного знака при определенных условиях обеспечивает относительную устойчивость системы (Меншуткин, 1971).

Под математической моделью я понимаю математическое выражение количественной стороны хода того или иного процесса или явления, в том числе динамики численности и биомассы популяций животных. Практически почти в каждом биологическом исследовании мы прямо или косвенно используем математические модели. Например, численное выражение среднего и амплитуды числа лучей в плавнике рыбы уже представляет собой простейшую математическую модель плавника. Применительно к математическим моделям динамики популяций, мне кажется, надо понимать уравнения или системы уравнений, которые отражают количественную сторону процесса динамики популяции и позволяют предвидеть дальнейший ход явления. Естественно, возникает вопрос, какое место в исследовании динамики популяций должно занимать математическое моделирование и как при помощи использования математических моделей способствовать успеху биологического исследования.

Процессы, .протекающие в органическом мире - те внутренние противоречия, которые движут развитие, носят в основном детерминированный характер и принадлежат как к группе процессов непрерывного действия с меняющейся интенсивностью (т. е. величиной и скоростью), так и к группе дискретных процессов. Это - процессы, определяющие ход явления. Но любое природное явление - это сложное переплетение внутренних и внешних противоречий; последние как бы создают ту обстановку, в которой протекает явление. Если процессы, отражающие внутреннее противоречие живого, относятся к категории детерминированных процессов дискретнего или непрерывного действия, то внешние воздействия носят, как правило, дискретный характер и не связаны с популяцией четкой обратной связью. Приступая к построению математической модели популяции, необходимо все это учитывать.

Как известно (Никольский, 1959), пользуясь математическим методом, можно выявить механизм протекания явления, но не вскрыть его приспособительную сущность. Однако знание механизма биологического явления для познания его сущности совершенно необходимо, и если метод математического моделирования может способствовать выяснению механизма хода явления - в нашем случае механизма динамики популяции, - то он должен быть максимально использован.

Варли (Varley, 1962), выступая в дискуссии по применимости математических моделей при популяционных исследованиях, изобразил место математической модели в популяционном исследовании следующим образом:

Однако теоретическая модель может быть использована в практических целях только после того, как она будет проверена на определении ее параметров в природе и превратится из теоретической модели в рабочую. Собственно теоретическая модель в понимании Варли - это скорее не математическая модель, отражающая ход явления, а рабочая гипотеза, основанная на предварительных биологических наблюдениях, которая дает возможность организовать исследование для определения исходных параметров. Последние позволяют создать уже рабочую модель пригодную для предсказания количественной стороны хода явления, т. е. "теоретическая модель" Варли - это те биологические принципы, которые должны быть положены в основу рабочей модели.

Ближе к процессу использования ЭВМ и математических моделей в разработке проблемы динамики популяций подходит схема, предложенная Д. И. Блохинцевым (1964) для работы современного физика: 1) измерение (набор фактов); 2) обработка полученной информации (на ЭВМ); 3) выводы (построение рабочих гипотез); 4) проверка их на счетных машинах; 5) построение теорий (предсказание на будущее).

Мне думается, что измерению (подбору фактов) также должна предшествовать гипотеза, основанная на общей методологии.

В этом отношении более правильно, как предлагает Д. Н. Хорафас (1967), начинать исследование с применением моделей и ЭВМ с постановки задачи. Этот автор предлагает следующую очередность операций: 1) определение задачи; 2) нахождение основных переменных величин; 3) определение соотношений между этими переменными и параметрами системы; 4) формулировка гипотезы относительно характера изучаемых условий; 5) построение математической или какой-либо иной модели; 6) проведение или планирование экспериментов; 7) проверка гипотезы; 8) оценка гипотезы в зависимости от исхода экспериментов; 9) принятие или отклонение гипотезы и формулировка выводов; 10) прогнозирование дальнейшего развития систем с учетом их взаимодействия; 11) выработка образа действия; 12) переход к этапу уточнения модели, выполнение необходимых корректив.

Схема Д. Н. Хорафаса, как мне представляется, близка к схеме, предлагаемой Д. И. Блохинцевым, но она вносит ряд уточнений, которые могут оказаться полезными и при популяционном анализе.

Таким образом, при исследованиях в области динамики популяций математическое моделирование должно обеспечивать более четкое представление о ходе процесса, главным образом о его количественной стороне. Математическое моделирование должно упростить процесс долгосрочного прогнозирования динамики популяций и, наконец, гарантировать надежный расчет режима эксплуатации популяций - режима, обеспечивающего наибольшую продуктивность популяции. Практическая задача, поставленная перед биологами и математиками в области построения математических моделей, - это создание такой модели, которая позволила бы автоматизировать службу долгосрочных прогнозов и использовать при расчетах оптимальных режимов эксплуатации промысловых животных вычислительную технику.

Мне представляется следующим ход биологического исследования динамики популяции и место в нем математического моделирования. На основе осмысливания имеющегося фактического материала создается рабочая гипотеза явления; на базе этой рабочей гипотезы строится программа исследования, обеспечивающая получение материалов, вскрывающих как причины, так и механизм хода явления. Эти материалы должны обеспечивать и возможность построения математической модели хода явления. Таким образом, в создании математической модели есть два этапа. Первый (теоретическая модель в схеме Варли) - рабочая гипотеза на основе собранных фактов оформляется в виде уравнения той или иной сложности; к этого рода моделям принадлежит подавляющее большинство математических моделей. Второй этап - на основе проверки рабочей гипотезы создается рабочая модель, пригодная для практических расчетов в прогностических и эксплуатационных целях. В основе как теоретической, так и рабочей моделей всегда лежит тот или иной комплекс теоретических представлений, и чем ближе эти теоретические представления к закономерностям, действующим в природе, тем правильнее и эффективнее будет созданная математическая модель.

Книга представляет собой лекции по математическому моделированию биологических процессов и написана на основании материала курсов, читаемых на биологическом факультете Московского государственного университета им. М. В. Ломоносова.
В 24 лекциях изложены классификация и особенности моделирования живых систем, основы математического аппарата, применяемого для построения динамических моделей в биологии, базовые модели роста популяций и взаимодействия видов, модели мультистационарных, колебательных и квазистохастических процессов в биологии. Рассматриваются методы изучения пространственно-временного поведения биологических систем, модели автоволновых биохимических реакций, распространения нервного импульса, модели раскраски шкур животных и другие. Особое внимание уделено важному для моделирования в биологии понятию иерархии времен, современным представлениям о фракталах и динамическом хаосе. Последние лекции посвящены современным методам математического и компьютерного моделирования процессов фотосинтеза. Лекции предназначены для студентов, аспирантов и специалистов, желающих ознакомиться с современными основами математического моделирования в биологии.

Молекулярная динамика.
На протяжении всей истории западной науки стоял вопрос о том, можно ли, зная координаты всех атомов и законы их взаимодействия, описать все процессы, происходящие во Вселенной. Вопрос не нашел своего однозначного ответа. Квантовая механика утвердила понятие неопределенности на микроуровне. В лекциях 10-12 мы увидим, что существование квазистохастических типов поведения в детерминированных системах делает практически невозможным предсказание поведения некоторых детерминированных систем и на макроуровне.

Следствием первого вопроса является второй: вопрос «сводимости». Можно ли, зная законы физики, т. е. законы движения всех атомов, входящих в состав биологических систем, и законы их взаимодействия, описать поведение живых систем. В принципе, на этот вопрос можно ответить с помощью имитационной модели, в которую заложены координаты и скорости движения всех атомов какой-либо живой системы и законы их взаимодействия. Для любой живой системы такая модель должна содержать огромное количество переменных и параметров. Попытки моделировать с помощью такого подхода функционирование элементов живых систем - биомакромолекул - делаются, начиная с 70-х годов.

Содержание
Предисловие ко второму изданию
Предисловие к первому изданию
Лекция 1. Введение. Математические модели в биологии
Лекция 2. Модели биологических систем, описываемые одним дифференциальным уравнением первого порядка
Лекция 3. Модели роста популяций
Лекция 4. Модели, описываемые системами двух автономных дифференциальных уравнений
Лекция 5. Исследование устойчивости стационарных состояний нелинейных систем второго порядка
Лекция 6. Проблема быстрых и медленных переменных. Теорема Тихонова. Типы бифуркаций. Катастрофы
Лекция 7. Мультистационарные системы
Лекция 8. Колебания в биологических системах
Лекция 9. Модели взаимодействия двух видов
Лекция 10. Динамический хаос. Модели биологических сообществ
Примеры фрактальных множеств
Лекция 11. Моделирование микробных популяций
Лекция 12. Модель воздействия слабого электрического поля на нелинейную систему трансмембранного переноса ионов
Лекция 13. Распределенные биологические системы. Уравнение реакция-диффузия
Лекция 14. Решение уравнения диффузии. Устойчивость гомогенных стационарных состояний
Лекция 15. Распространение концентрационной волны в системах с диффузией
Лекция 16. Устойчивость однородных стационарных решений системы двух уравнений типа реакция-диффузия. Диссипативные структуры
Лекция 17. Реакция Белоусова-Жаботинского
Лекция 18. Модели распространения нервного импульса. Автоволновые процессы и сердечные аритмии
Лекция 19. Распределенные триггеры и морфогенез. Модели раскраски шкур животных
Лекция 20. Пространственно-временные модели взаимодействия видов
Лекция 21. Колебания и периодические пространственные распределения величины РН и электрического потенциала вдоль клеточной мембраны гигантских водорослей Chara corallina
Лекция 22. Модели фотосинтетического электронного транспорта. Перенос электрона в мультиферментном комплексе
Лекция 23. Кинетические модели процессов фотосинтетического электронного транспорта
Лекция 24. Прямые компьютерные модели процессов в фотосинтетической мембране
Нелинейное естественно-научное мышление и экологическое сознание
Стадии эволюции сложных систем.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Лекции по математическим моделям в биологии, Ризниченко Г.Ю., 2011 - fileskachat.com, быстрое и бесплатное скачивание.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!