Что такое поток магнитной индукции определение. Поток индукции магнитного поля


Если электрический ток, как показали опыты Эрстеда, создает магнитное поле, то не может ли в свою очередь магнитное поле вызывать электрический ток в проводнике? Многие ученые с помощью опытов пытались найти ответ на этот вопрос, но первым решил эту задачу Майкл Фарадей (1791 - 1867).
В 1831 г. Фарадей обнаружил, что в замкнутом проводящем контуре при изменении магнитного поля возникает электрический ток. Этот ток назвали индукционным током.
Индукционный ток в катушке из металлической проволоки возникает при вдвигании магнита внутрь катушки и при выдвигании магнита из катушки (рис. 192),

а также при изменении силы тока во второй катушке, магнитное поле которой пронизывает первую катушку (рис. 193).

Явление возникновения электрического тока в замкнутом проводящем контуре при изменениях магнитного поля, пронизывающего контур, называется электромагнитной индукцией.
Появление электрического тока в замкнутом контуре при изменениях магнитного поля, пронизывающего контур, свидетельствует о действии в контуре сторонних сил неэлектростатической природы или о возникновении ЭДС индукции. Количественное описание явления электромагнитной индукции дается на основе установления связи между ЭДС индукции и физической величиной, называемой магнитным потоком.
Магнитный поток. Для плоского контура, расположенного в однородном магнитном поле (рис. 194), магнитным потоком Ф через поверхность площадью S называют величину, равную произведению модуля вектора магнитной индукции на площадь S и на косинус угла между вектором и нормалью к поверхности:

Правило Ленца. Опыт показывает, что направление индукционного тока в контуре зависит от того, возрастает или убывает магнитный поток, пронизывающий контур, а также от направления вектора индукции магнитного поля относительно контура. Общее правило, позволяющее определить направление индукционного тока в контуре, было установлено в 1833 г. Э. X. Ленцем.
Правило Ленца можно наглядно показать с помощью легкого алюминиевого кольца (рис. 195).

Опыт показывает, что при внесении постоянного магнита кольцо отталкивается от него, а при удалении притягивается к магниту. Результат опытов не зависит от полярности магнита.
Отталкивание и притяжение сплошного кольца объясняется возникновением индукционного тока в кольце при изменениях магнитного потока через кольцо и действием на индукционный ток магнитного поля. Очевидно, что при вдвигании магнита в кольцо индукционный ток в нем имеет такое направление, что созданное этим током магнитное поле противодействует внешнему магнитному полю, а при выдвигании магнита индукционный ток в нем имеет такое направление, что вектор индукции его магнитного поля совпадает по направлению с вектором индукции внешнего поля.
Общая формулировка правила Ленца: возникающий в замкнутом контуре индукционный ток имеет такое направление, что созданный им магнитный поток через площадь, ограниченную контуром, стремится компенсировать то изменение магнитного потока, которым вызывается данный ток.
Закон электромагнитной индукции. Экспериментальное исследование зависимости ЭДС индукции от изменения магнитного потока привело к установлению закона электромагнитной индукции: ЭДС индукции в замкнутом контуре пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром.
В СИ единица магнитного потока выбрана такой, чтобы коэффициент пропорциональности между ЭДС индукции и изменением магнитного потока был равен единице. При этом закон электромагнитной индукции формулируется следующим образом: ЭДС индукции в замкнутом контуре равна модулю скорости изменения магнитного потока через поверхность, ограниченную контуром:

С учетом правила Ленца закон электромагнитной индукции записывается следующим образом:

ЭДС индукции в катушке. Если в последовательно соединенных контурах происходят одинаковые изменения магнитного потока, то ЭДС индукции в них равна сумме ЭДС индукции в каждом из контуров. Поэтому при изменении магнитного потока в катушке, состоящей из n одинаковых витков провода, общая ЭДС индукции в n раз больше ЭДС индукции в одиночном контуре:

Для однородного магнитного поля на основании уравнения (54.1) следует, что его магнитная индукция равна 1 Тл, если магнитный поток через контур площадью 1 м 2 равен 1 Вб:

.

Вихревое электрическое поле. Закон электромагнитной индукции (54.3) по известной скорости изменения магнитного потока позволяет найти значение ЭДС индукции в контуре и при известном значении электрического сопротивления контура вычислить силу тока в контуре. Однако при этом остается нераскрытым физический смысл явления электромагнитной индукции. Рассмотрим это явление подробнее.

Возникновение электрического тока в замкнутом контуре свидетельствует о том, что при изменении магнитного потока, пронизывающего контур, на свободные электрические заряды в контуре действуют силы. Провод контура неподвижен, неподвижными можно считать свободные электрические заряды в нем. На неподвижные электрические заряды может действовать только электрическое поле. Следовательно, при любом изменении магнитного поля в окружающем пространстве возникает электрическое поле. Это электрическое поле и приводит в движение свободные электрические заряды в контуре, создавая индукционный электрический ток. Электрическое поле, возникающее при изменениях магнитного поля, называют вихревым электрическим полем.

Работа сил вихревого электрического поля по перемещению электрических зарядов и является работой сторонних сил, источником ЭДС индукции.

Вихревое электрическое поле отличается от электростатического поля тем, что оно не связано с электрическими зарядами, его линии напряженности представляют собой замкнутые линии. Работа сил вихревого электрического поля при движении электри ческого заряда по замкнутой линии может быть отлична от нуля.

ЭДС индукции в движущихся проводниках. Явление электромагнитной индукции наблюдается и в тех случаях, когда магнитное поле не изменяется во времени, но магнитный поток через контур изменяется из-за движения проводников контура в магнитном поле. В этом случае причиной возникновения ЭДС индукции является не вихревое электрическое поле, а сила Лоренца.


Электрический дипольный момент
Электрический заряд
Электрическая индукция
Электрическое поле
Электростатический потенциал См. также: Портал:Физика

Магни́тный пото́к - физическая величина, равная произведению модуля вектора магнитной индукции \vec B на площадь S и косинус угла α между векторами \vec B и нормалью \mathbf{n}. Поток \Phi_B как интеграл вектора магнитной индукции \vec B через конечную поверхность S определяется через интеграл по поверхности:

{{{1}}}

При этом векторный элемент dS площади поверхности S определяется как

{{{1}}}

Квантование магнитного потока

Значения магнитного потока Φ , проходящего через

Напишите отзыв о статье "Магнитный поток"

Ссылки

Отрывок, характеризующий Магнитный поток

– C"est bien, mais ne demenagez pas de chez le prince Ваsile. Il est bon d"avoir un ami comme le prince, – сказала она, улыбаясь князю Василию. – J"en sais quelque chose. N"est ce pas? [Это хорошо, но не переезжайте от князя Василия. Хорошо иметь такого друга. Я кое что об этом знаю. Не правда ли?] А вы еще так молоды. Вам нужны советы. Вы не сердитесь на меня, что я пользуюсь правами старух. – Она замолчала, как молчат всегда женщины, чего то ожидая после того, как скажут про свои года. – Если вы женитесь, то другое дело. – И она соединила их в один взгляд. Пьер не смотрел на Элен, и она на него. Но она была всё так же страшно близка ему. Он промычал что то и покраснел.
Вернувшись домой, Пьер долго не мог заснуть, думая о том, что с ним случилось. Что же случилось с ним? Ничего. Он только понял, что женщина, которую он знал ребенком, про которую он рассеянно говорил: «да, хороша», когда ему говорили, что Элен красавица, он понял, что эта женщина может принадлежать ему.
«Но она глупа, я сам говорил, что она глупа, – думал он. – Что то гадкое есть в том чувстве, которое она возбудила во мне, что то запрещенное. Мне говорили, что ее брат Анатоль был влюблен в нее, и она влюблена в него, что была целая история, и что от этого услали Анатоля. Брат ее – Ипполит… Отец ее – князь Василий… Это нехорошо», думал он; и в то же время как он рассуждал так (еще рассуждения эти оставались неоконченными), он заставал себя улыбающимся и сознавал, что другой ряд рассуждений всплывал из за первых, что он в одно и то же время думал о ее ничтожестве и мечтал о том, как она будет его женой, как она может полюбить его, как она может быть совсем другою, и как всё то, что он об ней думал и слышал, может быть неправдою. И он опять видел ее не какою то дочерью князя Василья, а видел всё ее тело, только прикрытое серым платьем. «Но нет, отчего же прежде не приходила мне в голову эта мысль?» И опять он говорил себе, что это невозможно; что что то гадкое, противоестественное, как ему казалось, нечестное было бы в этом браке. Он вспоминал ее прежние слова, взгляды, и слова и взгляды тех, кто их видал вместе. Он вспомнил слова и взгляды Анны Павловны, когда она говорила ему о доме, вспомнил тысячи таких намеков со стороны князя Василья и других, и на него нашел ужас, не связал ли он уж себя чем нибудь в исполнении такого дела, которое, очевидно, нехорошо и которое он не должен делать. Но в то же время, как он сам себе выражал это решение, с другой стороны души всплывал ее образ со всею своею женственной красотою.

В ноябре месяце 1805 года князь Василий должен был ехать на ревизию в четыре губернии. Он устроил для себя это назначение с тем, чтобы побывать заодно в своих расстроенных имениях, и захватив с собой (в месте расположения его полка) сына Анатоля, с ним вместе заехать к князю Николаю Андреевичу Болконскому с тем, чтоб женить сына на дочери этого богатого старика. Но прежде отъезда и этих новых дел, князю Василью нужно было решить дела с Пьером, который, правда, последнее время проводил целые дни дома, т. е. у князя Василья, у которого он жил, был смешон, взволнован и глуп (как должен быть влюбленный) в присутствии Элен, но всё еще не делал предложения.

Поток вектора магнитной индукции В через какую либо поверхность. Магнитный поток через малую площадку dS, в пределах которой вектор В неизменен, равен dФ = ВndS, где Bn проекция вектора на нормаль к площадке dS. Магнитный поток Ф через конечную… … Большой Энциклопедический словарь

МАГНИТНЫЙ ПОТОК - (поток магнитной индукции), поток Ф вектора магн. индукции В через к. л. поверхность. М. п. dФ через малую площадку dS, в пределах к рой вектор В можно считать неизменным, выражается произведением величины площадки и проекции Bn вектора на… … Физическая энциклопедия

магнитный поток - Скалярная величина, равная потоку магнитной индукции. [ГОСТ Р 52002 2003] магнитный поток Поток магнитной индукции через перпендикулярную магнитному полю поверхность, определяемый как произведение магнитной индукции в данной точке на площадь… … Справочник технического переводчика

МАГНИТНЫЙ ПОТОК - (символ Ф), мера силы и протяженности МАГНИТНОГО ПОЛЯ. Поток через площадь А под прямым углом к одинаковому магнитному полю есть Ф=mНА, где m магнитная ПРОНИЦАЕМОСТЬ среды, а Н интенсивность магнитного поля. Плотность магнитного потока это поток… … Научно-технический энциклопедический словарь

МАГНИТНЫЙ ПОТОК - поток Ф вектора магнитной индукции (см. (5)) В через поверхность S, нормальную вектору В в однородном магнитном поле. Единица магнитного потока в СИ (см.) … Большая политехническая энциклопедия

МАГНИТНЫЙ ПОТОК - величина, характеризующая магнитное воздействие на данную поверхность. М. п. измеряется количеством магнитных силовых линий, проходящих через данную поверхность. Технический железнодорожный словарь. М.: Государственное транспортное… … Технический железнодорожный словарь

Магнитный поток - скалярная величина, равная потоку магнитной индукции... Источник: ЭЛЕКТРОТЕХНИКА. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ПОНЯТИЙ. ГОСТ Р 52002 2003 (утв. Постановлением Госстандарта РФ от 09.01.2003 N 3 ст) … Официальная терминология

магнитный поток - поток вектора магнитной индукции В через какую либо поверхность. Магнитный поток через малую площадку dS, в пределах которой вектор В неизменен, равен dФ = BndS, где Вn проекция вектора на нормаль к площадке dS. Магнитный поток Ф через конечную… … Энциклопедический словарь

магнитный поток - , поток магнитной индукции поток вектора магнитной индукции через какую либо поверхность. Для замкнутой поверхности суммарный магнитный поток равен нулю, что отражает соленоидный характер магнитного поля, т. е. отсутствие в природе … Энциклопедический словарь по металлургии

Магнитный поток - 12. Магнитный поток Поток магнитной индукции Источник: ГОСТ 19880 74: Электротехника. Основные понятия. Термины и определения оригинал документа 12 магнитный по … Словарь-справочник терминов нормативно-технической документации

Книги

  • , Миткевич В. Ф.. В этой книге содержится многое, на что не всегда обращается должное внимание, когда речь идет о магнитном потоке, и что не было до сих пор достаточно определенно высказано или не было… Купить за 2252 грн (только Украина)
  • Магнитный поток и его преобразование , Миткевич В. Ф.. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. В этой книге содержится многое, на что не всегда обращается должное внимание, когда речь идет о…

На картинке показано однородное магнитное поле. Однородное означает одинаковое во всех точках в данном объеме. В поле помещена поверхность с площадью S. Линии поля пересекают поверхность.

Определение магнитного потока :

Магнитным потоком Ф через поверхность S называют количество линий вектора магнитной индукции B, проходящих через поверхность S.

Формула магнитного потока:

здесь α - угол между направлением вектора магнитной индукции B и нормалью к поверхности S.

Из формулы магнитного потока видно, что максимальным магнитный поток будет при cos α = 1, а это случится, когда вектор B параллелен нормали к поверхности S. Минимальным магнитный поток будет при cos α = 0, это будет, когда вектор B перпендикулярен нормали к поверхности S, ведь в этом случае линии вектора B будут скользить по поверхности S, не пересекая её.

А по определению магнитного потока учитываются только те линии вектора магнитной индукции, которые пересекают данную поверхность.

Измеряется магнитный поток в веберах (вольт-секундах): 1 вб = 1 в * с. Кроме того, для измерения магнитного потока применяют максвелл: 1 вб = 10 8 мкс. Соответственно 1 мкс = 10 -8 вб.

Магнитный поток является скалярной величиной.

ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ ТОКА

Вокруг проводника с током существует магнитное поле, которое обладает энергией. Откуда она берется? Источник тока, включенный в эл.цепь, обладает запасом энергии. В момент замыкания эл.цепи источник тока расходует часть своей энергии на преодоление действия возникающей ЭДС самоиндукции. Эта часть энергии, называемая собственной энергией тока, и идет на образование магнитного поля. Энергия магнитного поля равна собственной энергии тока. Собственная энергия тока численно равна работе, которую должен совершить источник тока для преодоления ЭДС самоиндукции, чтобы создать ток в цепи.

Энергия магнитного поля, созданного током, прямо пропорциональна квадрату силы тока. Куда пропадает энергия магнитного поля после прекращения тока? - выделяется (при размыкании цепи с достаточно большой силой тока возможно возникновение искры или дуги)

4.1. Закон электромагнитной индукции. Самоиндукция. Индуктивность

Основные формулы

· Закон электромагнитной индукции (закон Фарадея):

, (39)

где – эдс индукции;– полный магнитный поток (потокосцепление).

· Магнитный поток, создаваемый током в контуре,

где – индуктивность контура;– сила тока.

· Закон Фарадея применительно к самоиндукции

· Эдс индукции, возникающая при вращении рамки с током в магнитном поле,

где – индукция магнитного поля;– площадь рамки;– угловая скорость вращения.

· Индуктивность соленоида

, (43)

где – магнитная постоянная;– магнитная проницаемость вещества;– число витков соленоида;– площадь сечения витка;– длина соленоида.

· Сила тока при размыкании цепи

где – установившаяся в цепи сила тока;– индуктивность контура,– сопротивление контура;– время размыкания.

· Сила тока при замыкании цепи

. (45)

· Время релаксации

Примеры решения задач

Пример 1.

Магнитное поле изменяется по закону , где= 15 мТл,. В магнитное поле помещен круговой проводящий виток радиусом = 20 см под угломк направлению поля (в начальный момент времени). Найти эдс индукции, возникающую в витке в момент времени= 5 с.

Решение

По закону электромагнитной индукции возникающая в витке эдс индукции , где– магнитный поток, сцепленный в витке.

где – площадь витка,;– угол между направлением вектора магнитной индукциии нормалью к контуру:.

Подставим числовые значения: = 15 мТл,,= 20 см = = 0,2 м,.

Вычисления дают .

Пример 2

В однородном магнитном поле с индукцией = 0,2 Тл расположена прямоугольная рамка, подвижная сторона которой длиной= 0,2 м перемещается со скоростью= 25 м/с перпендикулярно линиям индукции поля (рис. 42). Определить эдс индукции, возникающую в контуре.

Решение

При движении проводника АВ в магнитном поле площадь рамки увеличивается, следовательно, возрастает магнитный поток сквозь рамку и возникает эдс индукции.

По закону Фарадея , где, тогда, но, поэтому.

Знак «–» показывает, что эдс индукции и индукционный ток направлены против часовой стрелки.

САМОИНДУКЦИЯ

Каждый проводник, по которому протекает эл.ток, находится в собственном магнитном поле.

При изменении силы тока в проводнике меняется м.поле, т.е. изменяется магнитный поток, создаваемый этим током. Изменение магнитного потока ведет в возникновению вихревого эл.поля и в цепи появляется ЭДС индукции. Это явление называется самоиндукцией.Самоиндукция - явление возникновения ЭДС индукции в эл.цепи в результате изменения силы тока. Возникающая при этом ЭДС называется ЭДС самоиндукции

Проявление явления самоиндукции

Замыкание цепи При замыкании в эл.цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое эл.поле, направленное против тока, т.е. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи (вихревое поле тормозит электроны). В результатеЛ1 загорается позже, чем Л2.

Размыкание цепи При размыкании эл.цепи ток убывает, возникает уменьшение м.потока в катушке, возникает вихревое эл.поле, направленное как ток (стремящееся сохранить прежнюю силу тока) , т.е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи. В результате Л при выключении ярко вспыхивает. Вывод в электротехнике явление самоиндукции проявляется при замыкании цепи (эл.ток нарастает постепенно) и при размыкании цепи (эл.ток пропадает не сразу).

ИНДУКТИВНОСТЬ

От чего зависит ЭДС самоиндукции? Эл.ток создает собственное магнитное поле. Магнитный поток через контур пропорционален индукции магнитного поля (Ф ~ B), индукция пропорциональна силе тока в проводнике (B ~ I), следовательно магнитный поток пропорционален силе тока (Ф ~ I). ЭДС самоиндукции зависит от скорости изменения силы тока в эл.цепи, от свойств проводника (размеров и формы) и от относительной магнитной проницаемости среды, в которой находится проводник. Физическая величина, показывающая зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, называется коэффициентом самоиндукции или индуктивностью. Индуктивность - физ. величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1Ампер за 1 секунду. Также индуктивность можно рассчитать по формуле:

где Ф - магнитный поток через контур, I - сила тока в контуре.

Единицы измерения индуктивности в системе СИ:

Индуктивность катушки зависит от: числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды (возможен сердечник).

ЭДС САМОИНДУКЦИИ

ЭДС самоиндукции препятствует нарастанию силы тока при включении цепи и убыванию силы тока при размыкании цепи.

Для характеристики намагниченности вещества в магнитном поле используетсямагнитный момент (Р м ). Он численно равен механическому моменту, испытываемому веществом в магнитном поле с индукцией в 1 Тл.

Магнитный момент единицы объема вещества характеризует его намагниченность - I , определяется по формуле:

I = Р м /V , (2.4)

где V - объем вещества.

Намагниченность в системе СИ измеряется, как и напряженность, в А/м , величина векторная.

Магнитные свойства веществ характеризуются объемной магнитной восприимчивостью - c о , величина безразмерная.

Если какое-либо тело поместить в магнитное поле с индукцией В 0 , то происходит его намагничивание. Вследствие этого тело создает свое собственное магнитное поле с индукцией В " , которое взаимодействует с намагничивающим полем.

В этом случае вектор индукции в среде (В) будет слагаться из векторов:

В = В 0 + В " (знак вектора опущен), (2.5)

где В " - индукция собственного магнитного поля намагнитившегося вещества.

Индукция собственного поля определяется магнитными свойствами вещества, которые характеризуются объемной магнитной восприимчивостью - c о , справедливо выражение:В " = c о В 0 (2.6)

Разделим на m 0 выражение (2.6):

В " / m о = c о В 0 /m 0

Получим: Н " = c о Н 0 , (2.7)

но Н " определяет намагниченность вещества I , т.е. Н " = I , тогда из (2.7):

I = c о Н 0 . (2.8)

Таким образом, если вещество находится во внешнем магнитном поле с напряженностьюН 0 , то внутри него индукция определяется выражением:

В=В 0 + В " = m 0 Н 0 +m 0 Н " = m 0 0 + I) (2.9)

Последнее выражение строго справедливо, когда сердечник (вещество) находится полностью во внешнем однородном магнитном поле (замкнутый тор, бесконечно длинный соленоид и т.д.).

Пусть в некоторой малой области пространства существует магнитное поле, которое можно считать однородным, то есть в этой области вектор магнитной индукции постоянен, как по величине, так и по направлению.
 Выделим малую площадку площадью ΔS , ориентация которой задается единичным вектором нормали n (рис. 445).

рис. 445
 Магнитный поток через эту площадку ΔФ m определяется как произведение площади площадки на нормальную составляющую вектора индукции магнитного поля

Где

скалярное произведение векторов B и n ;
B n − нормальная к площадке компонента вектора магнитной индукции.
 В произвольном магнитном поле магнитный поток через произвольную поверхность, определяется следующим образом (рис. 446):

рис. 446
− поверхность разбивается на малые площадки ΔS i (которые можно считать плоскими);
− определяется вектор индукции B i на этой площадке (который в пределах площадки можно считать постоянным);
− вычисляется сумма потоков через все площадки, на которые разбита поверхность

 Эта сумма называется потоком вектора индукции магнитного поля через заданную поверхность (или магнитным потоком).
 Обратите внимание, что при вычислении потока суммирование проводится по точкам наблюдения поля, а не по источникам, как при использовании принципа суперпозиции. Поэтому магнитный поток является интегральной характеристикой поля, описывающей его усредненные свойства на всей рассматриваемой поверхности.
 Трудно найти физический смысл магнитного потока, как и для иных полей это полезная вспомогательная физическая величина. Но в отличие от других потоков, магнитный поток настолько часто встречается в приложениях, что в системе СИ удостоился «персональной» единицы измерения − Вебер 2 : 1 Вебер − магнитный поток однородного магнитного поля индукции 1 Тл через площадку площадью 1 м 2 ориентированную перпендикулярно вектору магнитной индукции.
 Теперь докажем простую, но чрезвычайно важную теорему о магнитном потоке через замкнутую поверхность.
 Ранее мы установили, что силовые любого магнитного поля являются замкнутыми, уже из этого следует, что магнитный поток, через любую замкнутую поверхность равен нулю.

Тем не менее, приведем более формальное доказательство этой теоремы.
 Прежде всего, отметим, что для магнитного потока справедлив принцип суперпозиции: если магнитное поле создано несколькими источниками, то для любой поверхности поток поля, созданного системой элементов тока, равен сумме потоков полей, созданных каждым элементом тока в отдельности. Это утверждение следует непосредственно из принципа суперпозиции для вектора индукции и прямо пропорциональной связью между магнитным потоком и вектором магнитной индукции. Следовательно достаточно доказать теорему для поля, созданного элементом тока, индукция которого определяется по закону Био-Саварра-Лапласа. Здесь для нас важна структура поля, обладающего осевой круговой симметрией, значение модуля вектора индукции несущественно.
 Выберем в качестве замкнутой поверхности поверхность бруска, вырезанного, как показано на рис. 447.

рис. 447
 Магнитный поток отличен от нуля только через его две боковые грани, но эти потоки имеют противоположные знаки. Вспомним, что для замкнутой поверхности выбирают внешнюю нормаль, поэтому на одной из указанных граней (передней) поток положительный, а на задней отрицательный. Причем модули этих потоков равны, так как распределение вектора индукции поля на этих гранях одинаково. Данный результат не зависит от положения рассмотренного бруска. Произвольное тело можно разбить на бесконечно малые части, каждая из которых подобна рассмотренному бруску.
 Наконец, сформулируем еще одно важное свойство потока любого векторного поля. Пусть произвольная замкнутая поверхность ограничивает некоторое тело (рис. 448).

рис. 448
 Разобьем это тело на две части, ограниченные частями исходной поверхности Ω 1 и Ω 2 , и замкнем их общей границей раздела тела. Сумма потоков через эти две замкнутые поверхности равна потоку через исходную поверхность! Действительно сумма потоков через границу (один раз для одного тела, другой раз для другого) равна нулю, так как в каждом случае надо брать разные, противоположные нормали (каждый раз внешнюю). Аналогично можно доказать утверждение для произвольного разбиения тела: если тело разбито на произвольное число частей, то поток через поверхность тела равен сумме потоков через поверхности всех частей разбиения тела. Это утверждение очевидно для потока жидкости.
 Фактически мы доказали, что если поток векторного поля равен нулю через некоторую поверхность ограничивающее малый объем, то этот поток равен нулю через любую замкнутую поверхность.
 Итак, для любого магнитного поля справедлива теорема о магнитном потоке: магнитный поток через любую замкнутую поверхность равен нулю Ф m = 0.
 Ранее мы рассматривали теоремы о потоке для поля скоростей жидкости и электростатического поля. В этих случаях поток через замкнутую поверхность полностью определялся точечными источниками поля (истоками и стоками жидкости, точечными зарядами). В общем случае наличие ненулевого потока через замкнутую поверхность свидетельствует о наличии точечных источников поля. Следовательно, физическим содержанием теоремы о магнитном потоке является утверждение об отсутствии магнитных зарядов.

Если вы хорошо разобрались в данном вопросе и сумеете объяснить и отстоять свою точку зрения, то можете формулировать теорему о магнитном потоке и так: «Еще никто не нашел монополя Дирака».

Следует особо подчеркнуть, что, говоря об отсутствии источников поля, мы имеем виду именно точечных источников, подобных электрическим зарядам. Если провести аналогию с полем движущейся жидкости, электрические заряды подобны точкам, из которых вытекает (или втекает) жидкость, увеличивая или уменьшая ее количество. Возникновение магнитного поля, благодаря движению электрических зарядов подобно движению тела в жидкости, которое приводит к появлению вихрей, не изменяющих общего количества жидкости.

Векторные поля, для которых поток через любую замкнутую поверхность равен нулю получили красивое, экзотическое название − соленоидальные . Соленоидом называется проволочная катушка, по которой можно пропускать электрический ток. Такая катушка может создавать сильные магнитные поля, поэтому термин соленоидальный означает «подобный полю соленоида», хотя можно было назвать такие поля попроще − «магнитоподобные». Наконец такие поля еще называют вихревыми , подобно полю скоростей жидкости, образующей в своем движении всевозможные турбулентные завихрения.

Теорема о магнитном потоке имеет большое значение, она часто используется при доказательстве различных свойств магнитных взаимодействий, с ней мы будем встречаться неоднократно. Так, например, теорема о магнитном потоке доказывает, что вектор индукции магнитного поля, создаваемого элементом, не может иметь радиальной составляющей, иначе поток через цилиндрическую поверхность коаксиальную с элементом тока был бы отличен от нуля.
 Теперь проиллюстрируем применение теоремы о магнитном потоке для расчета индукции магнитного поля. Пусть магнитное поле создается кольцом с током, которое характеризуется магнитным моментом p m . Рассмотрим поле вблизи оси кольца на расстоянии z от центра, значительно большем радиуса кольца (рис. 449).

рис. 449
 Ранее мы получили формулу для индукции магнитного поля на оси для больших расстояний от центра кольца

 Мы не допустим большой ошибки, если будем считать, что такое же значение имеет вертикальная (пусть ось кольца вертикальна) компонента поля в пределах небольшого кольца радиуса r , плоскость которого перпендикулярна оси кольца. Так как вертикальная компонента поля изменяется с изменением расстояния, то неизбежно должны присутствовать радиальные компоненты поля, иначе не будет выполняться теорема о магнитном потоке! Оказывается этой теоремы и формулы (3) достаточно, чтобы найти эту радиальную компоненту. Выделим тонкий цилиндр толщиной Δz и радиуса r , нижнее основание которого находится на расстоянии z от центра кольца, соосный с кольцом и применим теорему о магнитном потоке к поверхности этого цилиндра. Магнитный поток через нижнее основание равен (учтите, что вектора индукции и нормали здесь противоположны)

где B z (z) z ;
поток через верхнее основание равен

где B z (z + Δz) − значение вертикальной компоненты вектора индукции на высоте z + Δz ;
поток через боковую поверхность (из осевой симметрии следует, что модуль радиальной составляющей вектора индукции B r на этой поверхности постоянен):

 По доказанной теореме сумма этих потоков равна нулю, поэтому справедливо уравнение

из которого определим искомую величину

 Осталось использовать формулу (3) для вертикальной составляющей поля и провести необходимые вычисления 3


 Действительно, убывание вертикальной компоненты поля приводит к появлению горизонтальных компонент: уменьшение вытекания через основания приводит к «течи» через боковую поверхность.
 Таким образом, мы доказали «криминальную теорему»: если через один конец трубы вытекает меньше, чем вливают в нее с другого конца, то где-то воруют через боковую поверхность.

1 Достаточно взять текст с определением потока вектора напряженности электрического поля и изменить обозначения (что здесь и сделано).
2 Названа в честь немецкого физика (члена Петербургской академии наук) Вильгельма Эдуарда Вебера (1804 – 1891)
3 Самые грамотные могут увидеть в последней дроби производную функции (3) и элементарно ее вычислить, нам же придется очередной раз воспользоваться приближенной формулой (1 + x) β ≈ 1 + βx.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!