Основные меры защиты людей от поражения электрическим током. Способы индивидуальной защиты от поражения электрическим током Аппаратура защиты человека от поражения электрическим током

Существуют следующие способы защиты, применяемые отдельно или в сочетании друг с другом: защитное заземление, зануление, защитное отключение, электрическое разделение сетей разного напряжения, применение малого напряжения, изоляция токоведущих частей, выравнивание потенциалов.

Рабочее заземление (преднамеренное соединение с землей какой-либо точки электроустановки) предназначено для обеспечения работы ее в нормальном и аварийном режимах. Оно обеспечивает соединение с заземлителем нейтральных точек силовых трансформаторов или генераторов (с помощью заземляющих проводников), т.е. при непосредственном соединении их с заземлителем или через малое активное сопротивление (в несколько Ом) нейтрали либо соединение нейтралей через трансформатор тока. Проводники и заземлители обычно изготавливаются из низкоуглеродистой стали.

Заземлители в виде штырей, вбиваемых в землю, называют электродами, которые могут быть одиночными или групповыми. Заземлитель имеет характеристики, обусловленные стеканием по нему тока в землю: напряжение на заземлителе; изменение потенциалов точек в земле вокруг заземлителя в зависимости от их расстояния от заземлителя в зоне растекания тока – вид потенциальной кривой; вид линий равного потенциала – эквипотенциальных линий на поверхности земли; сопротивление заземляющего устройства; напряжения прикосновения и шага.

В электроустановках с рабочим напряжением до 1000 В широко распространена трехфазная четырехпроводная сеть с глухозаземленной нейтралью ; стандартными напряжениями в этих сетях являются напряжения 220/127 , 380/220 , и 660/380 В .

Защитное заземление применяется для защиты обслуживающего персонала от опасного напряжения при прикосновении к электроустановке (напряжения прикосновения ), оно начинает действовать с момента повреждения её изоляции.

Подобное заземление необходимо для электроустановок при напряжениях 500 В и выше переменного и постоянного токов, при напряжениях 36 В и выше переменного и 110 В постоянного токов в помещениях с повышенной опасностью, особо опасных и в наружных электроустановках, при всех напряжениях переменного и постоянного токов во взрывоопасных помещениях.

Части электроустановок (корпуса электрических машин, трансформаторов, электрических аппаратов, вторичные обмотки измерительных трансформаторов и т.д.) во время аварийных режимов могут оказаться под напряжением и в случаях прикосновения к ним вызывать поражение электрическим током, поэтому они подлежат заземлению. Заземление электроустановок не требуется при номинальных напряжениях 36 В и ниже переменного и 110 В и ниже постоянного тока во всех случаях, за исключением взрывоопасных установок.

Шаговое напряжение (напряжение шага) возникает между ногами человека, стоящего на земле, из-за разности потенциалов на поверхности земли при растекании в земле тока замыкания на землю. Напряжение шага отсутствует, если человек стоит на линии равного потенциала или вне зоны растекания тока, т.е. на расстоянии более 20 м от заземлителя.

Для заземления могут быть использованы детали уже существующих сооружений, которые называются естественными заземлителями:

Металлические и железобетонные конструкции зданий и сооружений, находящихся в соприкосновении с землей;

Металлические трубопроводы, проложенные в земле, за исключением трубопроводов горючих жидкостей и газов;

Свинцовые оболочки кабелей, проложенных в земле;

Обсадные трубы скважин и т.д.

Наименьшие размеры электродов искусственных заземлителей:

В качестве заземляющих и нулевых проводников, соединяющих корпуса оборудования с заземлителями, могут применяться:

Специальные проводники;

Металлические конструкции оборудования и зданий;

Стальные трубы электропроводок, алюминиевые оболочки кабелей;

Металлические открыто расположенные трубопроводы всех назначений, за исключением трубопроводов для горючих жидкостей и газов, канализации и центрального отопления.

Проводники присоединяют к корпусам оборудования сваркой или болтовым соединением с обеспечением доступности для контроля или переделки при ухудшении контакта. Последовательное включение в цепь заземления или зануления отдельных корпусов оборудования запрещается.

Зануление предусматривает глухое заземление нейтрали источника или трансформатора трехфазного тока, одного вывода источника однофазного тока, наличие нулевого провода и его повторного заземления.

Заземление нейтрали источника имеет целью понизить напряжение на корпусах оборудования и на нулевом проводе, с которым эти корпуса соединены, до безопасного значения при замыкании фазного проводника на землю.

Повторное заземление нулевого провода предназначено для снижения напряжения на корпусах оборудования при замыкании фазы на корпус как при исправном, так и при оборванном нулевом проводе.

Зануление в электроустановках до 1000 В применяется в четырехпроводных сетях с глухозаземленной нейтралью трансформатора или генератора, в сетях с заземленным выводом источника однофазного тока, в сетях с заземленной средней точкой источника постоянного тока, зануление выполняется в тех же случаях, что и защитное заземление.

Защитное отключение – защита от поражения электрическим током путем отключения электроустановки при появлении опасности замыкания на корпус оборудования или непосредственно при касании токоведущих частей человеком. Устройство защитного отключения (УЗО) состоит из чувствительного элемента, реагирующего на изменение контролируемой величины, и исполнительного органа, отключающего соответствующий участок цепи.

УЗО применяется в электроустановках напряжением до 1000 В с изолированной или глухозаземленной нейтралью в качестве основного или дополнительного технического способа защиты, если безопасность не может быть обеспечена путем применения заземления или зануления или если заземление или зануление не могут быть выполнены по некоторым причинам.

Малое напряжение (не более 42 В между фазами и по отношению к земле) применяется для ручного инструмента, переносного или местного освещения в любых помещениях и вне их. Оно применяется также в помещениях с повышенной опасностью и особо опасных для питания светильников местного стационарного освещения, если они расположены на высоте менее 2,5м.

Распространено в применении напряжение 36В, а в замкнутых металлических емкостях должно применяться напряжение не более 12 В.

Электрозащитные средства и предохранительные приспособления Согласно ПТУ, защитными средствами называются приборы, аппараты и устройства, переносные и перевозимые приспособления и устройства, а также отдельные части устройств, приспособлений и аппаратов, служащие для защиты персонала, работающего на электроустановках, от поражения электрическим током.

Все защитные средства делятся на основные и дополнительные.

Основными защитными средствами называются такие, которые надежно выдерживают рабочее напряжение электроустановки и при помощи которых допускается касаться токоведущих частей, находящихся под напряжением. К ним относятся (в электроустановках до 1000 В): диэлектрические перчатки, инструмент с изолированными рукоятками, указатели напряжения, изолирующие клещи.

Дополнительными защитными средствами являются такие, которые сами не могут обеспечить безопасность при касании токоведущих частей - это диэлектрические галоши, диэлектрические резиновые коврики, изолирующие подставки.

К предохранительным приспособлениям относят предохранительные пояса (для удержания работающего на высоте), монтерские когти, лазы.

Раздел III Электроника

Промышленная электроника является одним из направлений технической электроники, которая связана с применением электронных приборов и устройств в различных отраслях промышленности и обслуживанием этих отраслей электронными устройствами измерения, контроля управления, преобразования электрической энергии, а также электронными технологическими установками.

В промышленной электронике можно выделить три области:

1. Информационная электроника составляет основу электронно-вычислительной и информационно-измерительной техники, а также устройств автоматики. К ней относятся электронные устройства получения, обработки, передачи, хранения и использования информации, устройства управления различными объектами и технологическими процессами.

2. Энергетическая электроника связана с устройствами преобразования электрической энергии средней и большой мощностей. Сюда относятся выпрямители, инверторы, мощные преобразователи частоты и другие устройства.

3. Электронная технология включает в себя методы и устройства, используемые в технологических процессах, основанных на действии электромагнитных волн различной длины (высокочастотные нагрев и плавка, ультразвуковая резка и сварка и т. д.), электронных и ионных пучков (электронная плавка и сварка и т. д.).

Главными свойствами, обусловливающими широкое применение электронных устройств, являются высокая чувствительность, большое быстродействие и универсальность.

Зарождение электроники было подготовлено всем ходом развития промышленного производства в конце ХIХ – начале ХХ веков.

Краткая хронология изобретений:

1904 г. – создание двухэлектродного электровакуумного прибора – диода и применение его в качестве детектора в радиоприемных устройствах (Я. Флеминг, Англия);

1907 г. – создание трехэлектродной электронной лампы – триода, позволяющей усиливать и генерировать электрические колебания (Ли де Форест, США);

1948 г. – изобретены полупроводниковые транзисторы на основе германия (Д. Бардин, У. Браттейн, У. Шокли, США);

1958 г. – созданы первые интегральные схемы (Д. Килби, Р. Нойс, США);

1962 г. – начат промышленный выпуск интегральных микросхем.

Одним из главных направлений развития полупроводниковой электроники в последнее время явилась интегральная микроэлектроника . Начало микроэлектроники было положено в Англии во второй половине 40-х годов созданием тонкопленочных деталей на основе технологии внесения микропримесей. Важной особенностью микроэлектроники является разработка и внедрение методов предельного уменьшения физических размеров элементов микросхемы: микрорезисторов, диодов, транзисторов. Это приводит к увеличению функциональных возможностей микросхем, повышению их надежности и быстродействия, снижению потребления энергии.

Полупроводниковые приборы

Полупроводники занимают промежуточное место между металлами (проводниками) и диэлектриками (изоляторами). Для изготовления полупроводниковых приборов применяются германий, кремний, селен, арсенид галлия, фосфид галлия и др.

В чистых полупроводниках концентрация носителей заряда – свободных электронов и дырок – составляет лишь 10 16 – 10 18 на 1 см 3 вещества. Для снижения удельного сопротивления полупроводника и придания ему определенного типа электропроводности – электронной при преобладании свободных электронов и дырочной при преобладании дырок – в чистые полупроводники вносят определенные примеси. Такой процесс называют легированием , а соответствующие полупроводниковые материалы – легированными .

В качестве легирующих примесей применяют элементы третьей и пятой групп Периодической системы элементов Д. И. Менделеева. Легирующие элементы третьей группы создают дырочную электропроводность полупроводниковых материалов и называются акцепторными примесями, элементы пятой группы – электронную электропроводность и называются донорными примесями.

Основное значение для работы полупроводниковых приборов имеет электронно-дырочный переход, который для краткости называют p-n- переходом.

Электронно-дырочным переходом называют область на границе двух полупроводников, один из которых имеет электронную, а другой – дырочную электропроводность.

При соприкосновении двух полупроводников с различными типами электропроводности в пограничном слое происходит рекомбинация (воссоединение) электронов и дырок. Свободные электроны из зоны полупроводника п -типа занимают свободные уровни в валентной зоне полупроводников р -типа. В результате вблизи границы двух полупроводников образуется слой, лишенный подвижных носителей заряда и поэтому обладающий высоким электрическим сопротивлением – запирающий слой . Толщина запирающего слоя обычно не превышает нескольких микрометров.

Если подключить внешнее (открывающее ) напряжение к p-n- переходу так, что по нему будет протекать сравнительно большой прямой ток (сопротивление p-n- перехода резко снижается, запирающий слой исчезает), то переход будет открыт . Сопротивление открытого p-n- перехода будет определяться только сопротивлением полупроводника.

При изменении знаков приложенного напряжения, то есть при подаче обратного (запирающего или закрывающего ) напряжения, сопротивление запирающего слоя резко возрастает и возникает при этом небольшой обратный ток. Обратный ток значительно меньше прямого и слабо зависит от величины обратного напряжения. Вольтамперная характеристика (ВАХ) p-n перехода представлена на рис.1. Из анализа ВАХ следует основное свойство p-n- перехода – односторонняя проводимость.

Рис. 6.1. Вольтамперная характеристика p-n- переход

При большом обратном напряжении возникает резкий рост обратного тока через p-n- переход. Это явление называют пробоем . Различают лавинный, тепловой и туннельный пробои.

Лавинный пробой возникает при большом обратном напряжении, создающем в p-n- переходе увеличенную напряженность электрического поля.

Тепловой пробой возникает вследствие разогрева p-n- перехода, при этом резко возрастает число неосновных носителей, что увеличивает обратный ток и вызывает дополнительное увеличение температуры перехода.

Туннельный пробой обуславливается туннельным эффектом, возникающим в сильнолегированных, тонких p-n- переходах, внутри которых велика напряженность электрического поля и высока вероятность туннельного перехода. Как правило, только тепловой пробой вызывает необратимые изменения параметров диода. Лавинный и туннельный пробои не разрушают p-n- переход, если они не сопровождаются тепловым пробоем.

Свойства чистых и легированных полупроводников и характеристики p-n- перехода широко используют в двухэлектродных полупроводниковых приборах - полупроводниковых резисторах и диодах .

Полупроводниковыми называют приборы, действие которых основано на использовании свойств полупроводников.

Полупроводниковые резисторы

Полупроводниковым резистором называют полупроводниковый прибор с двумя выводами, в котором используется зависимость электрического сопротивления полупроводника от напряжения, температуры, освещенности и других управляющих параметров.

В полупроводниковых резисторах применяется полупроводник, равномерно легированный примесями. У линейных резисторов (рис. 6.2, а), выполненных на основе слаболегированного кремния или арсенида галлия, сопротивление практически постоянно

а б в г

в широком диапазоне изменения напряжений и слабо зависит от условии внешней среды. В варисторах используется, наоборот, нелинейная симметричная вольт-амперная зависимость (рис. 6.2, б). Такую характеристику удается получить у резисторов, изготовленных, например, из кристаллического карбида кремния, смешанного с глиной. Варисторы применяют для защиты от перенапряжений, искрогашения, стабилизации напряжения и т. д.

Полупроводниковые приборы, которых при изменении температуры можно получить значительное изменение сопротивления, называют терморезисторами (рис. 6.2, в). Относительное изменение сопротивления полупроводниковых элементов при изменении температуры характеризуется температурным коэффициентом сопротивления ТК R:

ТК R = , (1.1)

где R иΔR - сопротивление и приращение сопротивления, Ом; ΔT - приращение температуры, ° С.

Терморезисторы, которые имеют отрицательные значения TKR в широком диапазоне изменения температуры, называют термисторами. Терморезисторы, имеющие большие положительны значения ТК R в узком диапазоне изменения температуры, называют позисторами .

Терморезисторы применяют для измерения, контроля и регулирования температуры, тепловой защиты электродвигателей, противопожарной сигнализации, контроля различных свойств окружающей среды, влияющих на теплоотдачу (уровень жидкости и сыпучих материалов, стен и газов), и т.д.

В полупроводниковых приборах называемых тензорезисторами , используется зависимость сопротивления полупроводниковой пластины от деформации (рис. 6.2, г). Тензорезисторы позволяют измерять и контролировать деформации различных строительных деталей и конструкций.

Полупроводниковые диоды

Полупроводниковым диодом называют полупроводниковый прибор с одним p-n-переходом и двумя выводами, в котором используются свойства перехода.

Электрод, подключенный к р -области, часто называют анодом , а электрод, соединенный с п -областью – катодом . На рис. 6.3 показана структура, условное обозначение полупроводниковых диодов и полярность прямого напряжения.

Все полупроводниковые диоды подразделяют на два класса: точечные и плоскостные . Точечные диоды используют в основном для выпрямления.

Выпрямительные диоды (рис. 6.3, а) предназначены для выпрямления переменного тока. Данные приборы обеспечивают большую величину прямого тока и выдерживают повышенные обратные напряжения. Диоды малой и средней мощности используются в источниках питания компьютеров и другой радиоэлектронной аппаратуре. Диоды большой мощности используют в силовых установках для питания тяговых электродвигателей, привода станков и механизмов, обеспечения технологических процессов в химическом и металлургическом производствах. Для характеристики выпрямительных свойств диодов вводится коэффициент выпрямления , равный отношению прямого и обратного токов при одном и том же напряжении. Чем выше коэффициент выпрямления, тем меньше потери и выше КПД выпрямителя.

Стабилитрон (рис. 6.3, б) - полупроводниковый диод, вольтамперная характеристика которого имеет участок лавинного пробоя. Стабилитроны широко используются в источниках питания для получения стабильных выходных напряжений.

Туннельный диод – это полупроводниковый прибор, вольтамперная характеристика которого при прямом напряжении имеет участок с отрицательным сопротивлением. Наличие такого участка объясняется возникновением туннельного эффекта, что позволяет использовать данные диоды в схемах генерации и усиления электрических колебаний.

Варикап (рис. 6.3, в) – полупроводниковый диод, в котором используется зависимость барьерной емкости р-п -перехода от обратного напряжения. Варикап в электрических схемах, приемниках и передатчиках используется как конденсатор с изменяемой емкостью, причем эти диоды имеют гарантированный и увеличенный диапазон изменения частоты. Для уменьшения потерь варикапы имеют малые объемные сопротивления р- и п- областей полупроводника и увеличенное сопротивление при обратном постоянном напряжении.

Высокочастотные диоды – это диоды, предназначенные для работы в устройствах высокой и сверхвысокой частоты (ультракоротковолновая и космическая радиосвязь, радиолокация, телеизмерительная техника и т.д.). Данные диоды имеют малые емкости р-п -перехода. СВЧ-диоды используются для модуляции и детектирования сверхвысокочастотных колебаний в диапазоне сотен мегагерц, а также в каскадах преобразования частоты радиоприемных устройств.

Импульсные диоды предназначены для работы с быстроизменяющимися импульсными сигналами. Эти диоды должны иметь малые емкости, а также выдерживать большие прямые импульсные токи и увеличенные обратные импульсные напряжения. Применяются такие диоды в компьютерах, мониторах и телевизорах, в радиолокационных передатчиках и приемниках.

Магнитодиод – полупроводниковый диод, в котором используется изменение вольтамперной характеристики под действием магнитного поля. В качестве магнитодиодов используют выпрямительные диоды.

Тензодиод - полупроводниковый диод, в котором используется изменение вольтамперной характеристики под действием механических деформаций. В качестве тензодиодов обычно применяют туннельные диоды, у которых отдельные участки вольтамперной характеристики существенно зависят от деформации рабочего тела диода.

Фотодиоды, полупроводниковые фотоэлементы и светодиоды полупроводниковые диоды, в которых используется эффект взаимодействия оптического излучения (видимого, инфракрасного или ультрафиолетового) с носителями заряда (электронами и дырками) в запирающем слое р-п -перехода.

В фотодиоде в результате освещения р-п -перехода повышается обратный ток. В полупроводниковом фотоэлементе при освещении р-п -перехода возникает обратное напряжение. В светодиоде в режиме прямого тока в зоне р-п -перехода возникает видимое или инфракрасное излучение.

Биполярные транзисторы

Биполярный транзистор – это электропреобразовательный прибор с двумя взаимодействующими р-п-переходами и с тремя выводами.

Особен­ностью этих приборов является возможность управления с помощью небольшой мощности во входной цепи значительно большей мощностью в выходной цепи.

Подобные приборы могут иметь два режима работы: непрерывный и ключевой. При непрерывном режиме ток в выходной цепи может принимать различные, сколь угодно близкие значения. Ключевой режим работы ха­рактеризуется тем, что ток в выходной цепи может иметь только два резко отличающихся значения; такой эле­мент работает по принципу «включено - выключено».

В зависимости от чередования легированных областей различают транзисторы п-р-п -типа и р-п-р -типа . На рис. 6.4. показаны условные обозначения транзисторов и их выводы: Э – эмиттер (со стрелкой); Б – база; К – коллектор. Нужно помнить, что стрелка всегда направлена из р -области в п -область.

Рис. 6.4. Условные обозначения биполярных транзисторов

В связи с тем, что эмиттерный переход включается прямо, он имеет малое сопротивление. Коллекторный переход включается обратно и имеет очень большое сопротивление. К эмиттеру прикладывается небольшое напряжение, а к коллектору очень большое (десятки вольт). Изменяя в небольших пределах ток эмиттерного перехода можно управлять большими изменениями тока в цепи коллектора, т.е. нагрузки. Таким образом транзистор усиливает мощность.

Транзистор р-п-р -типа подчиняется общим правилам:

1) эмиттер имеет более высокий потенциал, чем потенциал коллектора;

2) цепи база-эмиттер и база-коллектор работают как диоды (первый всегда открыт, второй закрыт);

3) каждый транзистор характеризуется максимальными значениями токов коллектора, базы (I к, I б ) и напряжением между коллектором и эмиттером (U кэ );

4) ток коллектора пропорционален току базы, т.е. , где β - коэффициент усиления по току.

Для транзистора п-р-п -типа эти правила остаются в силе, но полярность изменяется на противоположную.

Различают три схемы включения транзисторов: с общей базой, с общим эмиттером и общим коллектором. Название схемы показывает, какой электрод является общим, но принцип включения подчиняется общим правилам транзистора (эмиттерный переход открыт, а коллекторный – закрыт).

Схема с общей базой . Данная схема (рис. 6.5, а) в усилителях используется очень редко, так как коэффициент усиления тока в ней равен единице.

Схема с общим коллектором. Данная схема (рис. 6.5, б) имеет коэффициент усиления напряжения близкий к единице и очень большое сопротивление входной цепи. Выходная цепь обладает малым сопротивлением. Поэтому схема с общим коллектором используется для согласования сопротивления высокоомного преобразователя с низкоомной нагрузкой. Эта схема имеет специальное название – эмиттерный повторитель . Входное сопротивление эмиттерного повторителя может достигать 500 кОм, а выходное 50…100 Ом.

Схема с общим эмиттером . Данная схема получила наибольшее распространение (рис. 6.5, в). Коэффициент усиления по току достигает 10…200. Небольшой ток базы (входного сигнала) управляет большим током выходной цепи (выходной сигнал на сопротивлении нагрузки). На рис. 6.6, а приведены входные статические характеристики транзистора p-n-p -типа, который включен по схеме с общим эмиттером. Входная характеристика (вольт-амперная характеристика эмиттерного перехода) представляет собой обычную правую ветвь вольт-амперной характеристики диода. Полупроводниковый транзистор нельзя представлять чисто механически в виде двух диодов, так как процессы в одном переходе влияют на процессы в другом. Вид входной характеристики зависит от напряжения между эмиттером и коллектором.

Выходная характеристика напоминает вольт-амперную характеристику диода, который включен обратно (рис. 6.6, б). На ток коллектора в значительной мере влияет ток базы. В рабочей области ток коллектора незначительно зависит от напряжения между коллектором и эмиттером.

Характеристики и параметры транзисторов. Статической называется характеристика транзистора, описывающая взаимосвязь между входными и выходными токами и напряжениями, когда в выходной цепи нет нагрузки. Применяются такие статические характеристики биполярных транзисторов: входные, выходные и переходные.

Входная характеристика – это зависимость ).

Выходная характеристика – это зависимость при постоянном входном токе ().

Переходная характеристика (характеристика усиления) – это зависимость при постоянном напряжении на выходе ().

Входные и выходные характеристики строят экспериментально, а переходные можно построить с помощью семейства выходных характеристик. На рис. 5, а приведены входные статические характеристики транзистора p-n-p-типа , который включен по схеме с общим эмиттером.

При расчетах схем с биполярными транзисторами применяются h-параметры транзистора. Эти параметры характеризуют свойства транзистора при малых изменениях токов и напряжений, h -параметры транзистора разные для каждой схемы включения транзистора, но в справочниках есть формулы перерасчета параметров одной схемы в другие.

Для схемы с общим эмиттеромh -параметры, выраженные с помощью входных и выходных токов и напряжений имеют вид.

Параметр представляет собой входное сопротивление транзистора при .

Параметр - это коэффициент обратной связи по напряжению при . (Обратной связью называют действие выходного сигнала на входной сигнал усилителя).

Параметр - коэффициент усиления по току при .

Параметр характеризует исходную проводимость транзистора при .

Существенными являются три ограничения использования транзистора. Ограничение по мощности , которая выделяется на коллекторном переходе и препятствует перегреву перехода. Ограничение по напряжению между коллектором и эмиттером обеспечивает отсутствие пробоя коллекторного перехода. Ограничение по коллекторному току сохраняет также работоспособность перехода.

Полевые транзисторы

В полевых (униполярных) транзисторах электрический ток создается движением носителей заряда только одного знака . Управление током осуществляется электрическим полем, которое создается входным сигналом, а не током базы. Поэтому в управляющем электроде (затворе) ток практически не протекает. Следовательно, полевой транзистор имеет очень большое входное сопротивление.

Полевые транзисторы используют в усилителях мощности и преобразователях электрических колебаний. Принцип действия полевых транзисторов основан либо на зависимости толщины канала проводи­мости (проводящего слоя полупроводникового кристал­ла, заключенного между двумя р-n -переходами) от при­ложенного к переходам обратного напряжения, либо на влиянии поперечного электрического поля на концентра­цию подвижных носителей заряда у поверхности полупроводника. Полевые транзисторы первого рода назы­вают транзисторами p-n затвором , транзисторы вто­рого рода - транзисторами с изолированным затвором или МДП - и МОП-транзисторами (металл - диэлект­рик- полупроводник и металл - окисел - полупровод­ник). В обоих случаях в полевых транзисторах с по­мощью изменения напряжения на электроде, называе­мом затвором, имеется возможность управления прово­димостью канала между истоком - стоком и тем самым значением тока между этими электродами. Преимуще­ством полевых транзисторов является то, что управле­ние током в выходной цепи производится практически при отсутствии тока во входной цепи.

Транзистор с р-n -затвором (рис. 6.7, а) представляет собой полупроводниковую пластину. На гранях этой пластины создан полупроводниковый слой другого типа. Транзистор имеет три электрода: сток С , исток И и затвор З . Электрод, от которого двигаются основные заряды, называется истоком . Электрод, к которому движутся заряды, называется стоком .

На рис. 6.7, а видно, что при снижении потенциала на затворе уменьшается сечение n -канала, то есть увеличивается его сопротивление (уменьшается ток стока). Затвор всегда включается обратно к истоку. На рис. 6.7, б, в приведены условные обозначения транзистора с р-n -затвором (с управляющим р-n -переходом) с n -каналом и с p -каналом соответственно.

Полевые транзисторы, как и биполярные, имеют три схемы включения: с общим стоком, с общим истоком и с общим затвором. Основной усилительной схемой является схема с общим истоком (рис. 6.8, а).

Выходные характеристики схемы с общим истоком называют стоковыми характеристиками (рис. 6.8, б). Они напоминают выходные характеристики биполярного транзистора. В транзисторе с управляющим р-n -переходом есть диодное соединение. При положительном заряде на затворе наблюдается обычная диодная проводимость.

В транзисторах с изолированным затвором между материалами с различными проводимостями находится пленка изолятора. Затвор действительно изолирован от истока и стока и действует на ток только своим электрическим полем. Конструктивно транзистор выполняется на полупроводниковой подложке, которая имеет проводимость, противоположную проводимости канала. Основной является схема включения с общим истоком (рис. 6.9, а).

Стоковые характеристики полевого транзистора с изолированным затвором, включенного по схеме с общим истоком, напоминают выходные характеристики биполярного транзистора (рис. 6.9, б).

Режим обеднения I характеризуется отрицательным потенциалом на затворе, режим обогащения II – положительным. Положительный потенциал на затворе способствует расширению канала, уменьшает его сопротивление и повышает стоковый ток.

Тиристоры

Тиристор – это полупроводниковый прибор с двумя устойчивыми состояниями. В простейшем случае тиристор имеет три р-n -перехода (рис. 6.10). Тиристор переключается с закрытого состояния в открытое (тиро – открыто).

Первые промышленные образцы тиристоров появились в конце пятидесятых годов ХХ в. В настоящее время эти приборы получили широкое распространение. Преимущества тиристоров следующие: малые масса и габариты, большой срок службы, высокий КПД (0,9 и более), малая чувствительность к вибрации и механическим перегрузкам, способность работать при низких (прямых) и высоких (обратных) напряжениях, а также при очень больших токах (до 5000 А). номинальные значения напряжения в закрытом состоянии достигают 5000 В.

Различают управляемые и неуправляемые тиристоры. Неуправляемые тиристоры – это динисторы или диодные тиристоры (рис. 6.10, а) – это тиристоры с двумя электродами (выводами). Переход из одного состояния в другое в динисторах осуществляется изменением значения или полярности напряжения на выводах.

Управляемые тиристоры (рис. 6.10, б) – тринисторы – имеют три электрода (анод, катод, управляющий электрод). Вольт-амперная характеристика тиристора (рис. 6.10, в) имеет три участка: I участок – тиристор закрыт; II участок – неустойчивый режим работы; III участок – тиристор открыт. Используются также симметричные тиристоры, тиристоры с пятислойной структурой (p-n-p-n-p ). На рис. 6.11 показаны стандартные обозначения тиристоров.

Опасность поражения людей электрическим током на производстве и в быту появляется при несоблюдении мер безопасности, а также при отказе или неисправности электрического оборудования и бытовых приборов.

По сравнению с другими видами производственного травматизма электротравматизм составляет небольшой процент, однако по числу травм с тяжелым и особенно летальным исходом занимает одно из первых мест.

Для обеспечения электробезопасности необходимо точное соблюдение правил технической эксплуатации электроустановок и проведение мероприятий по защите от электротравматизма.

Средства защиты от поражения электрическим током разделяются на общетехнические, специальные и индивидуальные.

К общетехническим средствам защиты от прикосновения к токоведущим частям относятся:

  • изоляция проводов;
  • применение безопасного сверхнизкого (малого) напряжения;
  • обеспечение недоступности токоведущих частей с использованием оградительных средств (ограждения, кожух, корпус, электрический шкаф и т.д.);
  • блокировки безопасности (механические, электрические);
  • применение защитных устройств от случайных прикосновений (изолирование, ограждения, сигнализация, блокировка, заземление или зануление, защитное отключение, знаки безопасности);
  • использование средств борьбы со статическим электричеством;
  • меры ориентации (маркировка отдельных частей электрооборудования, надписи, предупредительные знаки, разноцветная изоляция, световая сигнализация и др.);
  • использование средств защиты.

Для защиты от случайных прикосновений токоведущие части и детали электрооборудования изолируют.

Электрическая изоляция - это слой диэлектрика, которым покрывают токоведущие части. Изоляция проводов характеризуется ее электрическим сопротивлением. Высокое сопротивление изоляции проводов относительно земли и корпусов электроустановок создает безопасные условия для человека.

Во время работы электроустановок состояние изоляции ухудшается за счет нагревания, механических повреждений, влияния климатических условий и окружающей производственной среды (химически активных веществ и кислот, температуры, давления, большой влажности или чрезмерной сухости). Нельзя допускать механических повреждений изоляции электроприборов.

Рассмотрим также случаи применения сверхнизкого (малого) напряжения. Сверхнизким (малым) напряжением считают напряжение, не превышающее 50 В.

В производственных условиях применяются малые напряжения 12 и 36 В. Они используются для питания ручного электрифицированного инструмента, переносных светильников, местного освещения в особо опасных помещениях и в помещениях с повышенной опасностью. Для светильников стационарного освещения, переносных светильников и электроинструмента в помещениях с повышенной опасностью безопасным напряжением считают 36 В.

Безопасным для переносных светильников при работе внутри металлических резервуаров, котлов, в осмотровых канавах, в сырых помещениях принято считать напряжение до 12 В.

Однако полную безопасность малые напряжения не гарантируют, поэтому они должны применяться в сочетании с другими средствами индивидуальной защиты (диэлектрическими ботами, перчатками, ковриками).

Широко распространить применение безопасного напряжения на все электрические устройства не представляется возможным. Уменьшение рабочего напряжения ведет к уменьшению мощности, что экономически нецелесообразно.

Ограждения применяются сплошные и сетчатые. Они должны быть огнестойкими. В установках напряжением выше 1000 В должны соблюдаться допустимые расстояния от токоведущих частей до ограждений.

Опасную зону для защиты от случайного прикосновения человека ограждают. Ограждения выполняют в виде переносных щитов, стенок, экранов, располагаемых в непосредственной близости от опасного оборудования или открытых токоведущих шин.

Незащищенное электрическое оборудование размещают также на недоступной высоте в помещении. Ограждения должны быть выполнены таким образом, чтобы снятие или открывание их были возможны лишь при помощи ключа или инструмента.

Оградительные устройства применяют совместно с сигнализацией и блокировкой, которые предотвращают несанкционированный доступ к опасному оборудованию.

Блокировка применяется в электроустановках с огражденными токоведущими частями. Она автоматически обеспечивает снятие напряжения с токоведущих частей электроустановок при несанкционированном проникновении за ограждение.

К специальным средствам защиты от напряжения, появившегося на корпусе электроустановки в результате нарушения изоляции, относятся защитное заземление, защитное зануление и защитное отключение.

Защитное заземление и зануление являются основной мерой защиты металлоконструкции. Основная цель этого мероприятия - защитить от возможного удара током пользователя прибора при замыкании на корпус, например от поражения электрическим током в случае замыкания фазного провода на корпус, когда нарушена изоляция.

Заземление - преднамеренное электрическое соединение какой- либо точки системы электроустановки или оборудования с заземляющим устройством для обеспечения электробезопасности.

Заземлению подлежат корпуса электрических машин и инструментов, осветительной арматуры, каркасы распределительных щитов, помещения с повышенной электроопасностью.

Заземляющее устройство состоит из заземлителя (проводящей части или совокупности соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду) и заземляющего проводника, соединяющего заземляемую часть (точку) с заземлителем.

Заземлители - металлические стержни, специально забиваемые вертикально в землю, а в ряде случаев еще и дополнительные приваренные к ним металлические полосы или прутки, укладываемые горизонтально в земле на дно котлована.

В случае возникновения напряжения на корпусе электроустановки с защитным заземлением электрический ток пройдет в землю по параллельной цепи, но не через тело человека.

Защитное действие заземления основано на двух принципах:

  • 1) уменьшение до безопасного значения разности потенциалов между заземляемым проводящим предметом и другими проводящими предметами, имеющими естественное заземление;
  • 2) отвод тока утечки при контакте заземляемого проводящего предмета с фазным проводом.

В правильно спроектированной системе появление утечки тока приводит к немедленному срабатыванию защитных устройств.

Таким образом, заземление наиболее эффективно только в комплексе с использованием устройств защитного отключения. В этом случае при большинстве нарушений изоляции потенциал на заземленных предметах не превысит опасных величин. Более того, неисправный участок сети будет отключен в течение очень короткого времени.

Заземление является дублером защитных функций предохранителей. Заземлять все электроприборы, имеющиеся в доме, нет необходимости: у большинства из них имеется надежный пластмассовый корпус, который сам по себе защищает от поражения электрическим током.

Занулением называют электрическое соединение металлических частей электрического устройства, не находящихся под напряжением, с заземленным нулевым проводом в пункте источника питания электроэнергией.

Защитное отключение - это система защиты, обеспечивающая безопасность путем быстрого автоматического отключения электроустановки при возникновении на ее корпусе опасного напряжения.

Перед началом работ с ручными электрическими машинами, переносными электроинструментами и светильниками следует:

  • определить по паспорту класс безопасности машины или инструмента, установить его соответствие намечаемым работам;
  • проверить комплектность и надежность крепления деталей;
  • убедиться (внешним осмотром) в исправности кабеля (шнура), его защитной трубки и штепсельной вилки, целостности изоляционных деталей корпуса, рукоятки и крышек щеткодержателей, защитных кожухов;
  • проверить четкость работы выключателя;
  • выполнить (при необходимости) проверку работы устройства защитного отключения;
  • проверить работу электроинструмента или машины на холостом ходу;
  • проверить исправность цепи заземления (корпус машины - заземляющий контакт штепсельной вилки).

Не допускается использовать в работе ручные электрические машины, переносные электроинструменты и светильники, имеющие дефекты.

Статическим электричеством называется совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности и в объеме диэлектрика или на изолированных проводниках.

Оно возникает в технологических процессах, сопровождающихся трением, измельчением, разбрызгиванием, распылением, фильтрованием и просеиванием веществ. При этом на самих материалах и на оборудовании образуется электрический потенциал в тысячи и десятки тысяч вольт. Приобретение телами избыточного заряда связано с явлением контактной электризации. Заряд в значительной степени зависит от электрической емкости материала, из которого выполнены изолированные проводящие объекты.

Проводящими объектами могут быть металлические обрезинен- ные материалы, вращающиеся части технологического оборудования, люди, работающие с наэлектризованными материалами. Заряжение таких объектов может происходить двумя путями: непосредственный контакт с наэлектризованными материалами и индуктивное заряжение, а также при смешанном заряжении.

Основным средством борьбы со статическим электричеством на всех объектах является применение заземляющих устройств.

Эффективным средством защиты от статического электричества является увлажнение помещений. Установлено, что при относительной влажности выше 70% накопления электростатических зарядов на поверхностях не происходит.

Для предотвращения искровых разрядов статического электричества следует устраивать усиленную вентиляцию и токопроводящие полы, увлажнять воздух, выдавать спецобувь и спецодежду.

Для предупреждения человека о возможной опасности, запрещения или предписания определенных действий, а также для информации о расположении объектов с опасными и (или) вредными воздействиями производственных факторов применяют меры ориентации - знаки безопасности (маркировка отдельных частей электрооборудования, надписи, предупредительные знаки, разноцветная изоляция, световая сигнализация и др.).

Плакаты и знаки электробезопасности предназначены для использования в электроустановках, на оборудовании и ограждениях токоведущих частей, конструкциях и стационарных лестницах, коммутационных аппаратах, вентилях и задвижках воздуховодов, трансформаторах и другом оборудовании с целью предупреждения о возможных опасностях, предотвращения аварийных ситуаций и травмирования людей.

В таблице 4.1 представлены виды и размеры знаков электробезопасности.

Таблица 4.1

Виды и размеры знаков электробезопасности

Наименование

Размер, мм

Не включать! Работают люди

Не открывать! Работают люди

Работа под напряжением, повторно не включать

Опасное электрическое поле. Без средств защиты проход запрещен

Испытание. Опасно для жизни!

Не влезай! Убьет

Стой! Напряжение

Не включать. Работа на линии

Работать здесь

Влезать здесь

250x250, 100x100

Заземлено

Опасность поражения электрическим током

Сторона 25, 40, 50, 80, 100, 150, 300

Средства индивидуальной защиты. Изолирующие электрозащитные средства делятся на основные и дополнительные.

К основным изолирующим электрозащитным средствам в электроустановках напряжением до 1000 В относятся изолирующие штанги, изолирующие клещи, указатели напряжения, диэлектрические перчатки, ручной изолирующий инструмент. Они проходят обязательную периодическую проверку. Их испытывают на пробой напряжением.

На рисунке 4.1 представлены электрозащитные средства для работы в электроустановках напряжением до 1000 В.

Рис. 4.1. Электрозащитные средства для работы в электроустановках напряжением до 1000 В: о - основные средства: 1 - изолирующие клещи; 2 - гаечный ключ с изолирующими рукоятками; 3 - отвертка с изолирующими рукоятками; 4 - пассатижи с изолирующими рукоятками; 5, 6, 7 - указатели напряжения; 8- токоизмерительные клещи; 9 - перчатки диэлектрические; б - дополнительные средства:

1 - галоши диэлектрические; 2 - боты диэлектрические; 3 - туфли антистатические; 4- сапоги диэлектрические; 5 - диэлектрический ковер; 6 - диэлектрическая дорожка; 7- изолирующая подставка

К дополнительным изолирующим электрозащитным средствам относят такие, которые сами по себе не могут при определенном напряжении обеспечить защиту от поражения электрическим током, но дополняют основное средство защиты:

  • в электроустановках с напряжением выше 1000 В это диэлектрические перчатки, диэлектрические боты, диэлектрические ковры и др.;
  • с напряжением до 1000 В - диэлектрические галоши, диэлектрические ковры, изолирующие подставки.

Вспомогательные защитные средства применяют для защиты от случайного падения с высоты, предохранения от световых и тепловых воздействий тока.

Вспомогательными средствами являются: предохранительные пояса, грудные обвязки, канаты, когти, защитные очки, рукавицы, суконные костюмы.

В основу обеспечения электробезопасности должно быть положено выполнение требований действующих правил устройства электроустановок (ПУЭ) и правил охраны труда (правил безопасности) при эксплуатации электроустановок.

При выборе и расчете технических устройств и других средств защиты учитываются три основных параметра: сила тока, протекающего через тело человека, напряжение прикосновения и длительность протекания тока.

Электрооборудование и электроустановки относятся к источникам повышенной опасности. Их использование и обслуживание сопряжены с риском поражения электричеством, особенно при игнорировании . Рассмотрим, как осуществляется защита от поражения электрическим током, и какие меры необходимо принимать при работе с высоковольтным оборудованием.

Основные категории средств защиты

Для обеспечения безопасности эксплуатации электрооборудования выполняются следующие меры, которые можно поделить на 3 основных группы:

  1. Использование общетехнических средств защиты.
  2. Применение средств индивидуальной защиты.
  3. Организация средств специальной защиты людей и оборудования.

Первоочерёдно должна быть обеспечена качественная изоляция проводников. Это реализуется как с помощью обеспечения недоступности токоведущих частей оборудования (при помощи корпусов приборов, распределительных щитков и шкафов), так и использованием двойной и тройной изоляции проводов.

Ей стоит уделить особое внимание. Изоляция подразделяется на рабочую, дополнительную и усиленную:

  • к рабочей изоляции относятся штатные диэлектрические оболочки, устанавливаемые на токопроводящую продукцию заводом-изготовителем. Она не только обеспечивает защиту от поражения электрическим током, но и предохраняет электрооборудование от негативного воздействия окружающей среды;
  • дополнительная изоляция направлена на обеспечение рабочей защиты, и такие используется в местах соединения или повреждения диэлектрика;
  • усиленная изоляция представляет собой вариант улучшенной, с более высокой степенью защиты, рабочей изоляцией.

Общетехнические средства защиты

Без их применения введение электрооборудования в эксплуатацию невозможно. Использование общетехнических средств защиты позволяет обеспечить безопасность как при эксплуатации, так и при обслуживании электрооборудования.

К таким средствам относятся , автоматы, системы изоляции и маркировка.

Их можно разделить на 2 категории:


Назначение индивидуальных средств защиты - обеспечение безопасности всех систем организма.

Специальные средства защиты

Исходя из функциональности, их можно разделить на следующие группы.

Системы защитного заземления

Их применение позволяет снизить напряжение металлических частей оборудования до безопасной для человека величины. В соответствии с правилами эксплуатации электрооборудования, использование заземляющего контура обязательно.

Механизм работы защитного заземления заключается в преднамеренном соединении с землёй внешних частей электроустановок, не предназначенных для пропуска тока, в частности, корпусов и управляющих механизмов. Ведь по причине короткого замыкания, нарушения изоляции проводов, попадания молнии, индуктивности проводников возникает высокий риск поражения человека при взаимодействии с корпусом оборудования. Обеспечить его защиту от поражения электрическим током можно с помощью заземления. В качестве земли может выступать грунт, вода рек и морей, залежи каменного угля и т. д.

По принципу организации заземление принято разделять на контурное и выносное.

Системы зануления

Этот способ широко распространён для обеспечения защиты в трехфазных сетях номиналом до 1000 В. Он заключается в преднамеренном соединении металлических частей оборудования с нейтралью трансформатора, напрямую подключённой к земле.

Системы защитного отключения

В эту группу входят устройства, автоматически отключающие электроустановки от источника тока при прикосновении к токопроводящим частям человека, либо при превышающей допустимые значения утечки тока. Стандартно применяются в однофазных сетях.

УЗО позволяют обеспечить защиту человека от поражения электрическим током путём снижения времени . При замыкании проводников с землёй или прикосновении к ним человека происходит оперативное срабатывание защитного выключателя. Использование УЗО позволяет не только обезопаситься от поражения электротоком, но и контролировать состояние изоляции, минимизировать последствия её повреждения. Для защиты человека от поражения электрическим током обычно применяются УЗО с током срабатывания не больше 30 мА.

Учитывая их конструкцию, устройства можно разделить на несколько типов:

  • электронные УЗО. Их работа возможна только при подключении к питанию: возможна подача тока как от контролируемой сети, так и от внешнего источника;
  • электромеханические УЗО. Их стоимость несколько выше электронных устройств, но за счёт повышенной чувствительности они обеспечивают более высокий уровень защиты. Для функционирования используется напряжение контролируемой сети.

В настоящее время применение УЗО стало широко распространено как в частном, так и промышленном использовании.

Помимо вышеперечисленного, обеспечить защиту от поражения электрическим током человек может, тщательно руководствуясь правилами эксплуатации и обслуживания электроприборов, электроустановок. Одни из основных правил - использовать потребители тока установленного номинала, не допускать к их управлению или ремонту детей, осуществлять контроль влажности, не разбирать приборы, находящиеся под напряжением.

При прохождении через тело человека тока, превышающего 30 мА, возникает угроза его здоровью. Неблагоприятное воздействие сказывается на мышечных тканях, органах дыхания, функциональном состоянии сердца. Требуется достаточно быстрое отключение тока, чтобы ситуация не стала опасной для жизни. Еще лучше использовать специальные средства и мероприятия , предотвращающие возникновение соответствующих ситуаций.

Определения и нормы

Подробно мероприятия по защите от поражения электрическим током изложены в государственном стандарте РФ ГОСТ Р МЭК 61140-2000, который вступил в действие с 01.01. 2002 г. Его основные положения идентичны международным нормам. Этот документ является базовым. На его основе допустима разработка федеральных, отраслевых и других нормативов. Использованная терминология соответствует данным международных профильных (электротехнических) словарей.

Область применения этого документа распространяется на электрическое оборудование, в котором используется напряжение до 1 000 V переменного тока, или до 1 500 V – постоянного. Правила относятся не только к отдельным установкам, но и к системам, их взаимным связям.

Для дополнительного уточнения по отдельным параметрам средств безопасности применяют специализированные стандарты. Так, чтобы узнать больше о защитных свойствах изолирующих оболочек проводников можно изучить государственный стандарт РФ 14254 – 96.

Пояснения к некоторым из основных определений:

  1. Под «прямым» понимают прикосновение человека к проводнику, который находится под напряжением. Но опасные ситуации возникают и в случае пробоя изоляции. Если в нормальном состоянии часть оборудования не является проводящей частью, используют иной термин – «косвенное прикосновение».
  2. Изоляция – это не только полимерная оболочка провода. Она может быть жидкой (масло в трансформаторе), газообразной (промежуток воздуха).
  3. Усиленный вариант изоляции состоит минимум из двух частей. Каждую из них недопустимо испытывать отдельно в качестве основного, или дополнительного защитного слоя.
  4. К средствам безопасности помимо изоляции относят также:
  • среды, не проводящие ток – полы, стены;
  • устройства и ограждения, препятствующие несанкционированному доступу;
  • оболочки, предотвращающие контакт с токоведущими элементами;
  • средства, обеспечивающие одинаковую величину потенциалов между проводником и землей;
  • системы, отключающие один или несколько проводников при возникновении аварийной ситуации;
  • использование низкого напряжения.

Индивидуальные и автоматические средства защиты

В любом случае при построении качественной системы безопасности должно соблюдаться основное правило: «опасные части (проводящие ток) делают недоступными, доступные части не должны представлять опасность для человека».

Меры безопасности

Приведенное выше правило рассматривается в нормальных условиях при возникновении неисправности. Для первого случая хватит основной защиты. Она составляется из мер (одной, или нескольких), способных предотвратить контакт человека с токопроводящей частью. Ниже перечисляется несколько вариантов:

  • Твердая изоляция, предотвращающая прикосновение к проводнику.
  • Воздушная изоляция. В этом случае одной ее недостаточно, необходим барьер, препятствующий доступу посторонних лиц. Такое ограждение делают с высокой прочностью. При необходимости его оснащают запорными устройствами, которые открываются с помощью ключей, кодовых или других специальных устройств.
  • Установка проводящих частей на слишком большом расстоянии друг от друга, что физически не позволяет прикоснуться к ним одновременно.
  • Использование приборов освещения, инструмента с электроприводом, функционирующих при низком напряжении питания (от 12 до 36 V). Для создания соответствующей системы применяют понижающие трансформаторы. Дополнительным средством безопасности является заземление их вторичных обмоток.
  • Ограничение уровня тока не более 2 мА, который протекает при сопротивлении 2 кОм.

Общий вид понижающего трансформатора

Цифры в последнем пункте указаны только для конкретной ситуации. Они будут иными для постоянного тока. Установлены соответствующие ограничительные нормы для постоянного тока, порога болевых ощущений, величины статического заряда. Следует учитывать также форму электрического сигнала, его частоту.

Для второго случая при возникновении неисправности применяют другие меры, дополнительно к перечисленным выше пунктам, либо самостоятельно:

  1. Изоляция, способная выдержать такие же уровни напряжения, как основной слой.
  1. Система, выравнивающая потенциалы. Ее составляют, как правило, из нескольких частей:
  • проводник заземления;
  • металлические конструкции, трубопровод;
  • соединение проводниками частей в локальных объемах, где присутствуют особые условия.
  1. Автоматическое устройство, отключающее питание при появлении опасных режимов работы.

Защитные мероприятия

Теперь подробнее об основных и вспомогательных средствах безопасности. Так как их точный состав зависит от конкретных условий, следует делать ссылки на основные защитные мероприятия и те, которые требуются при возникновении неисправностей.

Заземление и установки с изолированной нейтралью

Меры защиты от поражения электротоком и их особенности

Основная защита Меры, которые используют при возникновении неисправности
Отключение питания с помощью автоматики Слой изоляции, который располагается между опасными и открытыми проводниками Отключение от источника питания в автоматическом режиме с применением системы выравнивания потенциалов
Изоляция Основной изоляционный слой на проводниках Дополнительная изоляция
Метод выравнивания потенциалов Система, выравнивающая потенциалы, не допускающая возникновения напряжений опасного уровня
Разделение цепей (электрическое) Изоляционный слой между проводниками тока и открытыми частями, способными проводить ток Отделение поврежденной цепи от других участков с заземлением, либо только выравнивание потенциалов напряжений

Аналогичным образом в государственном стандарте определены параметры следующих средств безопасности:

  • отделение средой, не проводящей электрический ток;
  • использование систем БСНН (SELV) и ЗСНН (PELV);
  • ограничение в установившемся режиме уровня тока прикосновения;
  • ограничение электрического заряда.

Классификация

Электрическое оборудование разделяется на специальные классы защиты. Это упрощает создание эффективных мер защиты в сложных ситуациях, выполнение требований государственных контролирующих органов и другие практические действия. Особенности классов защиты:

  • Класс «0». В таком оборудовании используется изоляция в качестве основной защитной меры. Дополнительные средства безопасности при возникновении неисправностей не предусмотрены.
  • Класс «1». К этой группе относят оборудование, оснащенное системой выравнивания потенциалов. Она срабатывает при возникновении неисправностей и предотвращает поражение электрическим током . В этих установках проводящие элементы подсоединяют к специальному зажиму. Его в процессе монтажа подключают к системе выравнивания потенциалов. Для исключения ошибок такие места маркируют специальным знаком, буквами «РЕ», цветовой комбинацией (желтый и зеленый).
  • Класс «2». В этом оборудовании используют основную и дополнительную изоляции. В защитных оболочках не допускается использование крепежных элементов, не проводящих ток, которые могут быть сняты для технического обслуживания, или заменены на металлические аналоги.
  • В оборудовании класса «3» используют сверхнизкие напряжения, которые не превышают 50 V (переменного), или 120 V (постоянного) тока. Его эксплуатация возможна в любых режимах, причем опасные для человека ситуации исключены. Именно поэтому подключение таких устройств к нулевым проводникам для защиты не обязательно.

Дополнительные требования

Средства безопасности следует рассматривать в комплексе с условиями их использования. Так, например, некоторые устройства (автоматы, плавкие предохранители) необходимо после срабатывания возвращать в исходное положение, либо заменять. Для поддержания электрооборудования в рабочем состоянии длительное время регулярно производятся осмотры, техническое обслуживание. Следует обеспечить наличие достаточных защитных мер при выполнении таких операций.

Если предполагается проведение регламентных работ в ручных режимах, опасные токоведущие части располагают в недоступных местах. При невозможности выполнения этого требования применяют специальные устройства. Они обеспечивают надежную изоляцию от электрического источника питания.

Оболочки и ограждения снимаются для выполнения работ только персоналом, обладающим соответствующими навыками. Квалификация специалистов подтверждается документально (устанавливается группа допуска). Их знания проверяются регулярно, для чего на предприятиях создают специальные комиссии.

Изучение правил электробезопасности

Видео про помощь пострадавшему

Данное видео рассказывает об особенностях оказания первой помощи пострадавшему от электрического тока, о реанимационных мероприятиях.

Доступ к защитным элементам и устройствам нельзя ограничивать. Их размещают на хорошо видимых местах. Отдельно установлена норма для ситуаций, когда основным средством защиты является отключение электроустановок от источника тока. При этом необходимы снятие кожуха и демонтаж ограждения. В этих случаях конденсаторные приборы должны разряжаться автоматически до безопасного уровня не более чем за 5 секунд. Если такое условие не выполняется, то необходима табличка с надписью, предупреждающей о реальном времени разряда.

Электробезопасность (по ГОСТ 12.1.009–76 "ССБТ. Электробезопасность. Термины и определения") обеспечивается организационными и техническими мероприятиями, конструкцией электроустановок, применением технических методов, средств защиты.

Организационные меры защиты. Применение защитных мер регламентируется нормативными документами по электробезопасности: Правилами устройства электроустановок (ПУЭ), утвержденными приказом Минэнерго России от 8 июля 2002 г. № 204; Межотраслевыми правилами по охране труда при эксплуатации электроустановок (ПОТ Р М-016-01), утвержденными постановлением Минтруда России от 5 января 2001 г. № 3; Правилами технической эксплуатации электроустановок потребителей (ПТЭЭП9-2003), утвержденными приказом Минэнерго России от 12 января 2003 г. № 6.

Электроустановками называются машины, в которых производится, преобразуется, распределяется и потребляется электроэнергия. Меры защиты должны соответствовать виду электроустановки и условиям применения электрооборудования, обеспечивая достаточную безопасность.

Опасность поражения в электроустановках и его тяжесть зависят от номинального напряжения. Согласно ПУЭ электроустановки подразделяются на (а) работающие под напряжением более 1 кВ с глухозаземленной нейтралью (чаще используются сети напряжением U = 110: 750 кВ) и с изолированной нейтралью (6, 10, 20, 35 кВ) и (б) работающие под напряжением менее 1 кВ с глухозаземленной и с изолированной нейтралью.

Электрические сети напряжением до 1 кВ выполняются, как правило, трехфазными: 660, 380 и 220 В. Чаще применяют четырехпроводные сети напряжением 380/220 В. В ряде производств недопустимо использование сетей с глухозаземленной нейтралью. Силовые электроустановки напряжением 660, 380, 220 В, работающие с изолированной нейтралью, имеют меньшую опасность при однофазном прикосновении ввиду большого сопротивления изоляции проводов.

Классификация помещений. Безопасность при эксплуатации электроустановок существенно зависит от повышенной влажности и температуры воздуха, запыленности и загазованности помещений. Согласно ПУЭ все помещения по опасности поражения током делят на три категории : 1) помещения без повышенной опасности; 2) помещения с повышенной опасностью; 3) особо опасные помещения. При этом выделяют следующие признаки повышенной опасности :

  • – наличие токопроводящих полов – металлических, железобетонных, кирпичных и т.п.;
  • – сырость помещений при относительной влажности воздуха > 75%;
  • – высокая температура воздуха (t > 35 °С);
  • – токопроводящая пыль (металлическая, угольная и др.). Пыльными считаются помещения, в которых по условиям производства выделяется технологическая пыль в таком количестве, что она проникает внутрь машин и оборудования;
  • – возможность одновременного прикосновения человека к заземленной металлоконструкции и к металлическому корпусу электроустановки;
  • – коэффициент заполнения помещения электрооборудованием > 0,2.

Признаки особой опасности :

  • – особая сырость (ф ≈ 100% – стены, пол и потолок покрыты влагой);
  • – наличие химически активной среды (агрессивные пары, газы, жидкости).

Классификация обслуживающего персонала по электробезопасности . Существует пять квалификационных групп по охране труда, зависящих от типа электроустановок и рода работы. Для эксплуатации ручного электрооборудования достаточна первая квалификационная группа. Для управления электрооборудованием с напряжением U менее 1000 В необходима квалификация персонала не ниже второй группы, для работы на электроустановках с U более 1000 В – не ниже третьей.

Способы и меры защиты от поражения электрическим током . Технические способы и средства защиты приведены в ГОСТ 12.1.019–79 "Электробезопасность. Общие требования". Для обеспечения электробезопасности должны применяться отдельно или в сочетании друг с другом следующие технические способы и средства: защитное заземление; зануление; выравнивание потенциалов; электрическое разделение сетей; защитное отключение; изоляция токоведущих частей (рабочая, дополнительная, усиленная, двойная); оградительные устройства; предупредительная сигнализация, блокировка; знаки безопасности; средства защиты и предохранительные приспособления.

Защита от прикосновения или опасного приближения к токоведущим частям достигается дополнительной или усиленной изоляцией токоведущих частей; расположением токоведущих частей на недоступной высоте или в недоступном месте; использованием ограждений: сплошных в виде кожухов и крышек (в электроустановках U < 1 кВ) и сетчатых; применением блокировок, предупредительной сигнализации, знаков безопасности. По принципу действия блокировки делятся на механические и электрические. Например, в аппаратуре автоматики и ЭВМ применяют штепсельное соединение отдельных блоков, т.е. механическую блокировку. Электрическая блокировка осуществляет отключение электроустановки при открытии дверей, ограждений, крышек кожухов.

Малое напряжение и электрическое разделение сетей используют для повышения безопасности при работе в основном с ручным электрифицированным инструментом.

Малое напряжение – это номинальное напряжение ≤ 42 В, применяемое в целях уменьшения опасности поражения электрическим током. Наибольшая степень безопасности достигается при напряжении до 10 В (сила тока при случайном прикосновении I h = 10/1000 = 0,01 А). Источники малого напряжения: батареи, аккумуляторы, трансформаторы – должны быть максимально приближены к потребителю. Для ручного электроинструмента и местного освещения в помещениях с повышенной опасностью и особо опасных помещениях используют напряжение 12, 36, 42 В.

Электрическое разделение сетей : разветвленная сеть большой протяженности имеет значительную емкость и небольшое активное сопротивление изоляции относительно земли; ток замыкания на землю в такой сети может достигать значительной величины, поэтому однофазное прикосновение в сети является опасным. Опасность поражения резко снизится, если единую сильно разветвленную сеть с большой емкостью и малым сопротивлением разделить на ряд небольших сетей с незначительной емкостью и высоким сопротивлением изоляции с помощью специальных разделяющих трансформаторов.

Защитное заземление, зануление и защитное отключение являются наиболее распространенными техническими средствами для защиты персонала при прикосновении к токоведущим частям электрооборудования, которые могут оказаться под напряжением из-за повреждения изоляции.

Защитное заземление или зануление выполняют: а) во всех случаях при номинальном переменном напряжении ≥ 380 В и постоянном напряжении ≥ 440 В; б) в помещениях с повышенной опасностью и особо опасных при номинальном переменном U = 42: 380 В и постоянном U= 110 -5- 440 В. Таким образом, электроустановки, работающие иод напряжением до 42 В переменного и до 110 В постоянного тока, не требуют защитного заземления и зануления, за исключением некоторых случаев, оговоренных в ПУЭ.

Защитное заземление – это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Принцип действия защитного заземления состоит в снижении до безопасных значений напряжения прикосновения и силы тока, проходящего через человека, обусловленных замыканием на корпус (рис. 5.3). При заземлении корпуса происходит замыкание на землю; прикосновение к заземленному корпусу вызывает появление параллельной ветви, по которой часть тока замыкания проходит на землю через тело человека. Сила тока в параллельных цепях обратно пропорциональна сопротивлениям цепей, поэтому ток, проходящий через тело человека I h, безопасен.

Рис. 5.3.

Область применения защитного заземления – трехфазные сети напряжением до 1 кВ с изолированной нейтралью и сети напряжением более 1 кВ как с изолированной, так и с заземленной нейтралью.

Заземляющее устройство состоит из заземлителя (одного или нескольких металлических элементов, погруженных на определенную глубину в грунт) и проводников, которые соединяют заземляемое оборудование с заземлителем. В зависимости от расположения заземлителей относительно оборудования заземляющие устройства делятся на выносные и контурные. Выносное устройство располагается на некотором удалении от оборудования. Преимуществом такого типа заземляющего устройства является возможность выбора места размещения, недостатком – отдаленность заземлителя от защищаемого оборудования. Контурное устройство, заземлители которого расположены по контуру вокруг заземляемого оборудования, обеспечивают лучшую защиту.

Основной элемент заземляющего устройства – естественный или искусственный заземлитель. Естественными заземлителями могут быть металлические и железобетонные части коммуникаций и других сооружений, имеющие надежное соединение с землей. Для искусственных заземлителей применяют обычно вертикальные и горизонтальные элементы. В качестве вертикальных элементов используют стальные трубы, уголки, прутки, которые соединяют прочно между собой горизонтальными элементами из полосовой стали. Для заземляющих проводников используют полосовую и круглого сечения сталь.

Зануление – это преднамеренное электрическое соединение с нулевым защитным проводником металлических токоведущих частей, которые могут оказаться под напряжением. Это основное средство обеспечения электробезопасности в трехфазных сетях с заземленной нейтралью и U менее 1 кВ (обычно 220/127, 380/220, 660/380 В). В таких сетях уменьшить напряжение на корпусе, контактирующем с токоведущими частями, невозможно, но можно повысить безопасность оборудования, уменьшив длительность замыкания на корпус. В сети с занулением различают (рис. 5.4.): нулевой рабочий проводник HP (для питания током электроприемников) и нулевой защитный проводник НЗ (для зануления).

Рис. 5.4.

1 и 2 – корпусы одно- и трехфазного приемников тока; 3 – плавкие предохранители, I к – ток однофазного короткого замыкания, U ф – фазное напряжение

Зануление превращает замыкание на корпус в однофазное короткое замыкание, возникает ток большой величины, в результате чего срабатывает максимальная токовая защита, которая селективно отключает поврежденный участок. Для того чтобы быстро отключить аварийный участок, ток короткого замыкания, согласно ПУЭ, должен не менее чем в три раза превышать номинальный ток через плавкую вставку или в 1,25–1,4 раза номинальный ток автоматического выключателя. Расчет зануления заключается в определении сечения нулевого провода, удовлетворяющего условию срабатывания максимальной токовой защиты. Если запуленный корпус одновременно заземлен, то это улучшает условия безопасности, так как обеспечивает дополнительное заземление нулевого защитного (НЗ) провода.

Защитное отключение – это быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения электрическим током. Подобная опасность возникает при повреждениях установки, таких как замыкание на землю; снижение сопротивления изоляции; неисправности заземления, зануления или устройства защитного отключения.

Повреждение установки приводит к изменениям некоторых величин, которые можно использовать как входные величины автоматического устройства, осуществляющего защитное отключение. Например, напряжение корпуса относительно земли, напряжение нулевой последовательности (несимметрия напряжения фаз относительно земли), ток замыкания на землю, ток нулевой последовательности и другие параметры могут быть восприняты датчиком автоматического устройства как входная величина (время срабатывания менее 0,2 с). Защитное отключение можно использовать в качестве единственной или основной меры защиты совместно с дополнительным заземлением или занулением или в дополнение к заземлению или занулению.

Электрозащитные средства применяются для защиты людей, работающих с электроустановками, от поражения электрическим током, воздействия электрической дуги и электромагнитного поля. По характеру применения электрозащитные средства подразделяются на две категории: средства коллективной и средства индивидуальной защиты.

Электрозащитные средства могут быть основными и дополнительными. Основными являются средства защиты, изоляция которых длительно выдерживает рабочее напряжение электроустановки и которые позволяют прикасаться к токоведущим частям, находящимся под напряжением. Средства защиты, которые сами по себе не могут при данном напряжении обеспечить защиту от поражения током, а применяются совместно с основными электрозащитными средствами, служат дополнительными средствами.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!